forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheckqueue_tests.cpp
447 lines (417 loc) · 14.1 KB
/
checkqueue_tests.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// Copyright (c) 2012-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <checkqueue.h>
#include <sync.h>
#include <test/util/random.h>
#include <test/util/setup_common.h>
#include <util/system.h>
#include <util/time.h>
#include <boost/test/unit_test.hpp>
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <unordered_set>
#include <utility>
#include <vector>
/**
* Identical to TestingSetup but excludes lock contention logging if
* `DEBUG_LOCKCONTENTION` is defined, as some of these tests are designed to be
* heavily contested to trigger race conditions or other issues.
*/
struct NoLockLoggingTestingSetup : public TestingSetup {
NoLockLoggingTestingSetup()
#ifdef DEBUG_LOCKCONTENTION
: TestingSetup{CBaseChainParams::MAIN, /*extra_args=*/{"-debugexclude=lock"}} {}
#else
: TestingSetup{CBaseChainParams::MAIN} {}
#endif
};
BOOST_FIXTURE_TEST_SUITE(checkqueue_tests, NoLockLoggingTestingSetup)
static const unsigned int QUEUE_BATCH_SIZE = 128;
static const int SCRIPT_CHECK_THREADS = 3;
struct FakeCheck {
bool operator()() const
{
return true;
}
void swap(FakeCheck& x) noexcept {};
};
struct FakeCheckCheckCompletion {
static std::atomic<size_t> n_calls;
bool operator()()
{
n_calls.fetch_add(1, std::memory_order_relaxed);
return true;
}
void swap(FakeCheckCheckCompletion& x) noexcept {};
};
struct FailingCheck {
bool fails;
FailingCheck(bool _fails) : fails(_fails){};
FailingCheck() : fails(true){};
bool operator()() const
{
return !fails;
}
void swap(FailingCheck& x) noexcept
{
std::swap(fails, x.fails);
};
};
struct UniqueCheck {
static Mutex m;
static std::unordered_multiset<size_t> results GUARDED_BY(m);
size_t check_id;
UniqueCheck(size_t check_id_in) : check_id(check_id_in){};
UniqueCheck() : check_id(0){};
bool operator()()
{
LOCK(m);
results.insert(check_id);
return true;
}
void swap(UniqueCheck& x) noexcept
{
std::swap(x.check_id, check_id);
};
};
struct MemoryCheck {
static std::atomic<size_t> fake_allocated_memory;
bool b {false};
bool operator()() const
{
return true;
}
MemoryCheck() = default;
MemoryCheck(const MemoryCheck& x)
{
// We have to do this to make sure that destructor calls are paired
//
// Really, copy constructor should be deletable, but CCheckQueue breaks
// if it is deleted because of internal push_back.
fake_allocated_memory.fetch_add(b, std::memory_order_relaxed);
};
MemoryCheck(bool b_) : b(b_)
{
fake_allocated_memory.fetch_add(b, std::memory_order_relaxed);
};
~MemoryCheck()
{
fake_allocated_memory.fetch_sub(b, std::memory_order_relaxed);
};
void swap(MemoryCheck& x) noexcept
{
std::swap(b, x.b);
};
};
struct FrozenCleanupCheck {
static std::atomic<uint64_t> nFrozen;
static std::condition_variable cv;
static std::mutex m;
// Freezing can't be the default initialized behavior given how the queue
// swaps in default initialized Checks.
bool should_freeze {false};
bool operator()() const
{
return true;
}
FrozenCleanupCheck() = default;
~FrozenCleanupCheck()
{
if (should_freeze) {
std::unique_lock<std::mutex> l(m);
nFrozen.store(1, std::memory_order_relaxed);
cv.notify_one();
cv.wait(l, []{ return nFrozen.load(std::memory_order_relaxed) == 0;});
}
}
void swap(FrozenCleanupCheck& x) noexcept
{
std::swap(should_freeze, x.should_freeze);
};
};
// Static Allocations
std::mutex FrozenCleanupCheck::m{};
std::atomic<uint64_t> FrozenCleanupCheck::nFrozen{0};
std::condition_variable FrozenCleanupCheck::cv{};
Mutex UniqueCheck::m;
std::unordered_multiset<size_t> UniqueCheck::results;
std::atomic<size_t> FakeCheckCheckCompletion::n_calls{0};
std::atomic<size_t> MemoryCheck::fake_allocated_memory{0};
// Queue Typedefs
typedef CCheckQueue<FakeCheckCheckCompletion> Correct_Queue;
typedef CCheckQueue<FakeCheck> Standard_Queue;
typedef CCheckQueue<FailingCheck> Failing_Queue;
typedef CCheckQueue<UniqueCheck> Unique_Queue;
typedef CCheckQueue<MemoryCheck> Memory_Queue;
typedef CCheckQueue<FrozenCleanupCheck> FrozenCleanup_Queue;
/** This test case checks that the CCheckQueue works properly
* with each specified size_t Checks pushed.
*/
static void Correct_Queue_range(std::vector<size_t> range)
{
auto small_queue = std::make_unique<Correct_Queue>(QUEUE_BATCH_SIZE);
small_queue->StartWorkerThreads(SCRIPT_CHECK_THREADS);
// Make vChecks here to save on malloc (this test can be slow...)
std::vector<FakeCheckCheckCompletion> vChecks;
for (const size_t i : range) {
size_t total = i;
FakeCheckCheckCompletion::n_calls = 0;
CCheckQueueControl<FakeCheckCheckCompletion> control(small_queue.get());
while (total) {
vChecks.resize(std::min(total, (size_t) InsecureRandRange(10)));
total -= vChecks.size();
control.Add(vChecks);
}
BOOST_REQUIRE(control.Wait());
if (FakeCheckCheckCompletion::n_calls != i) {
BOOST_REQUIRE_EQUAL(FakeCheckCheckCompletion::n_calls, i);
}
}
small_queue->StopWorkerThreads();
}
/** Test that 0 checks is correct
*/
BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Zero)
{
std::vector<size_t> range;
range.push_back(size_t{0});
Correct_Queue_range(range);
}
/** Test that 1 check is correct
*/
BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_One)
{
std::vector<size_t> range;
range.push_back(size_t{1});
Correct_Queue_range(range);
}
/** Test that MAX check is correct
*/
BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Max)
{
std::vector<size_t> range;
range.push_back(100000);
Correct_Queue_range(range);
}
/** Test that random numbers of checks are correct
*/
BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Random)
{
std::vector<size_t> range;
range.reserve(100000/1000);
for (size_t i = 2; i < 100000; i += std::max((size_t)1, (size_t)InsecureRandRange(std::min((size_t)1000, ((size_t)100000) - i))))
range.push_back(i);
Correct_Queue_range(range);
}
/** Test that failing checks are caught */
BOOST_AUTO_TEST_CASE(test_CheckQueue_Catches_Failure)
{
auto fail_queue = std::make_unique<Failing_Queue>(QUEUE_BATCH_SIZE);
fail_queue->StartWorkerThreads(SCRIPT_CHECK_THREADS);
for (size_t i = 0; i < 1001; ++i) {
CCheckQueueControl<FailingCheck> control(fail_queue.get());
size_t remaining = i;
while (remaining) {
size_t r = InsecureRandRange(10);
std::vector<FailingCheck> vChecks;
vChecks.reserve(r);
for (size_t k = 0; k < r && remaining; k++, remaining--)
vChecks.emplace_back(remaining == 1);
control.Add(vChecks);
}
bool success = control.Wait();
if (i > 0) {
BOOST_REQUIRE(!success);
} else if (i == 0) {
BOOST_REQUIRE(success);
}
}
fail_queue->StopWorkerThreads();
}
// Test that a block validation which fails does not interfere with
// future blocks, ie, the bad state is cleared.
BOOST_AUTO_TEST_CASE(test_CheckQueue_Recovers_From_Failure)
{
auto fail_queue = std::make_unique<Failing_Queue>(QUEUE_BATCH_SIZE);
fail_queue->StartWorkerThreads(SCRIPT_CHECK_THREADS);
for (auto times = 0; times < 10; ++times) {
for (const bool end_fails : {true, false}) {
CCheckQueueControl<FailingCheck> control(fail_queue.get());
{
std::vector<FailingCheck> vChecks;
vChecks.resize(100, false);
vChecks[99] = end_fails;
control.Add(vChecks);
}
bool r =control.Wait();
BOOST_REQUIRE(r != end_fails);
}
}
fail_queue->StopWorkerThreads();
}
// Test that unique checks are actually all called individually, rather than
// just one check being called repeatedly. Test that checks are not called
// more than once as well
BOOST_AUTO_TEST_CASE(test_CheckQueue_UniqueCheck)
{
auto queue = std::make_unique<Unique_Queue>(QUEUE_BATCH_SIZE);
queue->StartWorkerThreads(SCRIPT_CHECK_THREADS);
size_t COUNT = 100000;
size_t total = COUNT;
{
CCheckQueueControl<UniqueCheck> control(queue.get());
while (total) {
size_t r = InsecureRandRange(10);
std::vector<UniqueCheck> vChecks;
for (size_t k = 0; k < r && total; k++)
vChecks.emplace_back(--total);
control.Add(vChecks);
}
}
{
LOCK(UniqueCheck::m);
bool r = true;
BOOST_REQUIRE_EQUAL(UniqueCheck::results.size(), COUNT);
for (size_t i = 0; i < COUNT; ++i) {
r = r && UniqueCheck::results.count(i) == 1;
}
BOOST_REQUIRE(r);
}
queue->StopWorkerThreads();
}
// Test that blocks which might allocate lots of memory free their memory aggressively.
//
// This test attempts to catch a pathological case where by lazily freeing
// checks might mean leaving a check un-swapped out, and decreasing by 1 each
// time could leave the data hanging across a sequence of blocks.
BOOST_AUTO_TEST_CASE(test_CheckQueue_Memory)
{
auto queue = std::make_unique<Memory_Queue>(QUEUE_BATCH_SIZE);
queue->StartWorkerThreads(SCRIPT_CHECK_THREADS);
for (size_t i = 0; i < 1000; ++i) {
size_t total = i;
{
CCheckQueueControl<MemoryCheck> control(queue.get());
while (total) {
size_t r = InsecureRandRange(10);
std::vector<MemoryCheck> vChecks;
for (size_t k = 0; k < r && total; k++) {
total--;
// Each iteration leaves data at the front, back, and middle
// to catch any sort of deallocation failure
vChecks.emplace_back(total == 0 || total == i || total == i/2);
}
control.Add(vChecks);
}
}
BOOST_REQUIRE_EQUAL(MemoryCheck::fake_allocated_memory, 0U);
}
queue->StopWorkerThreads();
}
// Test that a new verification cannot occur until all checks
// have been destructed
BOOST_AUTO_TEST_CASE(test_CheckQueue_FrozenCleanup)
{
auto queue = std::make_unique<FrozenCleanup_Queue>(QUEUE_BATCH_SIZE);
bool fails = false;
queue->StartWorkerThreads(SCRIPT_CHECK_THREADS);
std::thread t0([&]() {
CCheckQueueControl<FrozenCleanupCheck> control(queue.get());
std::vector<FrozenCleanupCheck> vChecks(1);
// Freezing can't be the default initialized behavior given how the queue
// swaps in default initialized Checks (otherwise freezing destructor
// would get called twice).
vChecks[0].should_freeze = true;
control.Add(vChecks);
bool waitResult = control.Wait(); // Hangs here
assert(waitResult);
});
{
std::unique_lock<std::mutex> l(FrozenCleanupCheck::m);
// Wait until the queue has finished all jobs and frozen
FrozenCleanupCheck::cv.wait(l, [](){return FrozenCleanupCheck::nFrozen == 1;});
}
// Try to get control of the queue a bunch of times
for (auto x = 0; x < 100 && !fails; ++x) {
fails = queue->m_control_mutex.try_lock();
}
{
// Unfreeze (we need lock n case of spurious wakeup)
std::unique_lock<std::mutex> l(FrozenCleanupCheck::m);
FrozenCleanupCheck::nFrozen = 0;
}
// Awaken frozen destructor
FrozenCleanupCheck::cv.notify_one();
// Wait for control to finish
t0.join();
BOOST_REQUIRE(!fails);
queue->StopWorkerThreads();
}
/** Test that CCheckQueueControl is threadsafe */
BOOST_AUTO_TEST_CASE(test_CheckQueueControl_Locks)
{
auto queue = std::make_unique<Standard_Queue>(QUEUE_BATCH_SIZE);
{
std::vector<std::thread> tg;
std::atomic<int> nThreads {0};
std::atomic<int> fails {0};
for (size_t i = 0; i < 3; ++i) {
tg.emplace_back(
[&]{
CCheckQueueControl<FakeCheck> control(queue.get());
// While sleeping, no other thread should execute to this point
auto observed = ++nThreads;
UninterruptibleSleep(std::chrono::milliseconds{10});
fails += observed != nThreads;
});
}
for (auto& thread: tg) {
if (thread.joinable()) thread.join();
}
BOOST_REQUIRE_EQUAL(fails, 0);
}
{
std::vector<std::thread> tg;
std::mutex m;
std::condition_variable cv;
bool has_lock{false};
bool has_tried{false};
bool done{false};
bool done_ack{false};
{
std::unique_lock<std::mutex> l(m);
tg.emplace_back([&]{
CCheckQueueControl<FakeCheck> control(queue.get());
std::unique_lock<std::mutex> ll(m);
has_lock = true;
cv.notify_one();
cv.wait(ll, [&]{return has_tried;});
done = true;
cv.notify_one();
// Wait until the done is acknowledged
//
cv.wait(ll, [&]{return done_ack;});
});
// Wait for thread to get the lock
cv.wait(l, [&](){return has_lock;});
bool fails = false;
for (auto x = 0; x < 100 && !fails; ++x) {
fails = queue->m_control_mutex.try_lock();
}
has_tried = true;
cv.notify_one();
cv.wait(l, [&](){return done;});
// Acknowledge the done
done_ack = true;
cv.notify_one();
BOOST_REQUIRE(!fails);
}
for (auto& thread: tg) {
if (thread.joinable()) thread.join();
}
}
}
BOOST_AUTO_TEST_SUITE_END()