-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathTrainDataset.py
53 lines (46 loc) · 1.64 KB
/
TrainDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import os
import cv2
import torchvision
import numpy as np
import matplotlib.pyplot as plt
from torchvision import transforms
from torch.utils.data import Dataset
def img_to_blocks(imgs,path,stride=14,filter_size=33):
images_dataset = []
for img in imgs:
image = plt.imread(os.path.join(path,img))
# 3 dimensions (RGB) convert to YCrCb (take only Y -> luminance)
image = cv2.cvtColor(image, cv2.COLOR_BGR2YCR_CB)
image = cv2.normalize(image, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
image = image[:,:,0]
h,w = image.shape
h_n = ((h - filter_size) // stride) + 1
w_n = ((w - filter_size) // stride) + 1
for i in range(h_n):
for j in range(w_n):
blocks = image[i*stride:(i*stride)+filter_size, j*stride:(j*stride)+filter_size]
images_dataset.append(blocks)
return np.array(images_dataset)
class TrainDataset(Dataset):
def __init__(self,data_dir,mat,transform = None,phi=0.25):
self.data_dir = os.listdir(data_dir)
self.transform = transform
self.image_blocks = img_to_blocks(self.data_dir,data_dir)
self.phi = phi
self.mat = mat
def __len__(self):
return len(self.image_blocks)
def __getitem__(self,idx):
image_block = self.image_blocks[idx]
label = image_block
if self.transform is not None:
image_block = self.transform(image_block)
label = self.transform(label)
image_block = image_block.view(33*33)
label = label.view(33*33)
image_block = image_block.double()
label = label.double()
with torch.no_grad():
image_block = torch.matmul(self.mat,image_block)
return image_block,label