forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_freq_handler.py
134 lines (116 loc) · 6.85 KB
/
multi_freq_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import pandas as pd
from qlib.data.dataset.loader import QlibDataLoader
from qlib.contrib.data.handler import DataHandlerLP, _DEFAULT_LEARN_PROCESSORS, check_transform_proc
class Avg15minLoader(QlibDataLoader):
def load(self, instruments=None, start_time=None, end_time=None) -> pd.DataFrame:
df = super(Avg15minLoader, self).load(instruments, start_time, end_time)
if self.is_group:
# feature_day(day freq) and feature_15min(1min freq, Average every 15 minutes) renamed feature
df.columns = df.columns.map(lambda x: ("feature", x[1]) if x[0].startswith("feature") else x)
return df
class Avg15minHandler(DataHandlerLP):
def __init__(
self,
instruments="csi500",
start_time=None,
end_time=None,
freq="day",
infer_processors=[],
learn_processors=_DEFAULT_LEARN_PROCESSORS,
fit_start_time=None,
fit_end_time=None,
process_type=DataHandlerLP.PTYPE_A,
filter_pipe=None,
inst_processors=None,
**kwargs,
):
infer_processors = check_transform_proc(infer_processors, fit_start_time, fit_end_time)
learn_processors = check_transform_proc(learn_processors, fit_start_time, fit_end_time)
data_loader = Avg15minLoader(
config=self.loader_config(), filter_pipe=filter_pipe, freq=freq, inst_processors=inst_processors
)
super().__init__(
instruments=instruments,
start_time=start_time,
end_time=end_time,
data_loader=data_loader,
infer_processors=infer_processors,
learn_processors=learn_processors,
process_type=process_type,
)
def loader_config(self):
# Results for dataset: df: pd.DataFrame
# len(df.columns) == 6 + 6 * 16, len(df.index.get_level_values(level="datetime").unique()) == T
# df.columns: close0, close1, ..., close16, open0, ..., open16, ..., vwap16
# freq == day:
# close0, open0, low0, high0, volume0, vwap0
# freq == 1min:
# close1, ..., close16, ..., vwap1, ..., vwap16
# df.index.name == ["datetime", "instrument"]: pd.MultiIndex
# Example:
# feature ... label
# close0 open0 low0 ... vwap1 vwap16 LABEL0
# datetime instrument ...
# 2020-10-09 SH600000 11.794546 11.819587 11.769505 ... NaN NaN -0.005214
# 2020-10-15 SH600000 12.044961 11.944795 11.932274 ... NaN NaN -0.007202
# ... ... ... ... ... ... ... ...
# 2021-05-28 SZ300676 6.369684 6.495406 6.306568 ... NaN NaN -0.001321
# 2021-05-31 SZ300676 6.601626 6.465643 6.465130 ... NaN NaN -0.023428
# features day: len(columns) == 6, freq = day
# $close is the closing price of the current trading day:
# if the user needs to get the `close` before the last T days, use Ref($close, T-1), for example:
# $close Ref($close, 1) Ref($close, 2) Ref($close, 3) Ref($close, 4)
# instrument datetime
# SH600519 2021-06-01 244.271530
# 2021-06-02 242.205917 244.271530
# 2021-06-03 242.229889 242.205917 244.271530
# 2021-06-04 245.421524 242.229889 242.205917 244.271530
# 2021-06-07 247.547089 245.421524 242.229889 242.205917 244.271530
# WARNING: Ref($close, N), if N == 0, Ref($close, N) ==> $close
fields = ["$close", "$open", "$low", "$high", "$volume", "$vwap"]
# names: close0, open0, ..., vwap0
names = list(map(lambda x: x.strip("$") + "0", fields))
config = {"feature_day": (fields, names)}
# features 15min: len(columns) == 6 * 16, freq = 1min
# $close is the closing price of the current trading day:
# if the user gets 'close' for the i-th 15min of the last T days, use `Ref(Mean($close, 15), (T-1) * 240 + i * 15)`, for example:
# Ref(Mean($close, 15), 225) Ref(Mean($close, 15), 465) Ref(Mean($close, 15), 705)
# instrument datetime
# SH600519 2021-05-31 241.769897 243.077942 244.712997
# 2021-06-01 244.271530 241.769897 243.077942
# 2021-06-02 242.205917 244.271530 241.769897
# WARNING: Ref(Mean($close, 15), N), if N == 0, Ref(Mean($close, 15), N) ==> Mean($close, 15)
# Results of the current script:
# time: 09:00 --> 09:14, ..., 14:45 --> 14:59
# fields: Ref(Mean($close, 15), 225), ..., Mean($close, 15)
# name: close1, ..., close16
#
# Expression description: take close as an example
# Mean($close, 15) ==> df["$close"].rolling(15, min_periods=1).mean()
# Ref(Mean($close, 15), 15) ==> df["$close"].rolling(15, min_periods=1).mean().shift(15)
# NOTE: The last data of each trading day, which is the average of the i-th 15 minutes
# Average:
# Average of the i-th 15-minute period of each trading day: 1 <= i <= 250 // 16
# Avg(15minutes): Ref(Mean($close, 15), 240 - i * 15)
#
# Average of the first 15 minutes of each trading day; i = 1
# Avg(09:00 --> 09:14), df.index.loc["09:14"]: Ref(Mean($close, 15), 240- 1 * 15) ==> Ref(Mean($close, 15), 225)
# Average of the last 15 minutes of each trading day; i = 16
# Avg(14:45 --> 14:59), df.index.loc["14:59"]: Ref(Mean($close, 15), 240 - 16 * 15) ==> Ref(Mean($close, 15), 0) ==> Mean($close, 15)
# 15min resample to day
# df.resample("1d").last()
tmp_fields = []
tmp_names = []
for i, _f in enumerate(fields):
_fields = [f"Ref(Mean({_f}, 15), {j * 15})" for j in range(1, 240 // 15)]
_names = [f"{names[i][:-1]}{int(names[i][-1])+j}" for j in range(240 // 15 - 1, 0, -1)]
_fields.append(f"Mean({_f}, 15)")
_names.append(f"{names[i][:-1]}{int(names[i][-1])+240 // 15}")
tmp_fields += _fields
tmp_names += _names
config["feature_15min"] = (tmp_fields, tmp_names)
# label
config["label"] = (["Ref($close, -2)/Ref($close, -1) - 1"], ["LABEL0"])
return config