-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate.py
67 lines (53 loc) · 1.73 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import argparse
import logging
import os
from PIL import Image
import json
from tqdm import tqdm
from utils.config_utils import get_config
from model.gan_wrapper.get_gan_wrapper import get_gan_wrapper
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--model",
type=str,
help="The model to use.",
)
parser.add_argument(
"--num_images",
type=int,
default=1000,
help="Number of images to generate.",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
config = get_config(os.path.join('generate', f'{args.model}.cfg'))
torch.cuda.manual_seed(0)
generator = get_gan_wrapper(config.model).cuda()
generator.eval()
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(os.path.join(args.output_dir, 'images'), exist_ok=True)
style_vectors = dict()
for i in tqdm(range(args.num_images)):
image, style = generator.sample_image_style()
image = image[0]
style = style[0]
image = image.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
image = Image.fromarray(image)
file_name = f"image_{str(i).zfill(6)}.png"
image.save(os.path.join(args.output_dir, 'images', file_name))
style_vectors[file_name] = style.to("cpu")
torch.save(style_vectors, os.path.join(args.output_dir, "style_vectors.pt"))
if __name__ == "__main__":
# Initialize the logger
logging.basicConfig(level=logging.INFO)
main()