-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNew_Jersey_Data_LONG_2016.R
152 lines (102 loc) · 7.23 KB
/
New_Jersey_Data_LONG_2016.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
################################################################################
###
### Create New Jersey Data LONG for 2016
###
################################################################################
### Load SGP Package
require(SGP)
require(data.table)
### Load 2016 raw PARCC data
NJ_ELA <- fread("Data/Base_Files/PARCC Data Extract for NCIEA 15-16 SY_ELA_count=832735.csv", sep="|", colClasses=rep("character", 37))
NJ_MATH<- fread("Data/Base_Files/PARCC Data Extract for NCIEA 15-16 SY_Math related_count=811079.csv", sep="|", colClasses=rep("character", 37))
New_Jersey_Data_LONG_2016 <- rbindlist(list(NJ_ELA, NJ_MATH))
###
### Tidy up data
###
#### Rename variables
setnames(New_Jersey_Data_LONG_2016, names(New_Jersey_Data_LONG_2016), gsub(" |/", "", names(New_Jersey_Data_LONG_2016)))
setnames(New_Jersey_Data_LONG_2016,
c("SSID", "IRTTheta", "TestScaleScore", "TestCSEMProbableRange", "Subject", "GradeLevelWhenAssessed", "TestPerformanceLevel",
"ResponsibleSchoolCode", "ResponsibleSchoolName", "ResponsibleDistrictCode", "ResponsibleDistrictName", "ResponsibleCountyName",
"SpecialEducationClassification", "TitleIIILimitedEnglishProficientParticipationStatus", "EconomicallyDisadvantaged"),
c("ID", "SCALE_SCORE", "SCALE_SCORE_ACTUAL", "SCALE_SCORE_CSEM", "CONTENT_AREA", "GRADE", "ACHIEVEMENT_LEVEL",
"SCHOOL_NUMBER", "SCHOOL_NAME", "DISTRICT_NUMBER", "DISTRICT_NAME", "County_Name",
"Special_Education__SE_", "Current_LEP", "Economically_Disadvantaged"))
## YEAR
New_Jersey_Data_LONG_2016[, YEAR := '2016']
New_Jersey_Data_LONG_2016[, 1 := NULL] # "AssessmentYear" -- doesn't work with name for some reason (?!?)
## CONTENT_AREA / "subject"
New_Jersey_Data_LONG_2016[, CONTENT_AREA := toupper(gsub(" ", "_", CONTENT_AREA))]
New_Jersey_Data_LONG_2016[which(CONTENT_AREA == "ENGLISH_LANGUAGE_ARTS/LITERACY"), CONTENT_AREA := "ELA"]
#### GRADE
New_Jersey_Data_LONG_2016[, GRADE := as.character(as.numeric(GRADE))]
New_Jersey_Data_LONG_2016[which(!CONTENT_AREA %in% c("ELA", "MATHEMATICS")), GRADE := "EOCT"]
#### ACH LEVEL / "Summative Performance Level"
New_Jersey_Data_LONG_2016[, ACHIEVEMENT_LEVEL := paste("Level", ACHIEVEMENT_LEVEL)]
#### Demographic Variables
New_Jersey_Data_LONG_2016[, Race_Ethnicity_Combined := as.character(NA)]
New_Jersey_Data_LONG_2016[which(HispanicorLatinoEthnicity=="Y"), Race_Ethnicity_Combined := "Hispanic"]
New_Jersey_Data_LONG_2016[which(AmericanIndianorAlaskaNative=="Y"), Race_Ethnicity_Combined := "Native American"]
New_Jersey_Data_LONG_2016[which(Asian=="Y"), Race_Ethnicity_Combined := "Asian"]
New_Jersey_Data_LONG_2016[which(BlackorAfricanAmerican=="Y"), Race_Ethnicity_Combined := "Black"]
New_Jersey_Data_LONG_2016[which(NativeHawaiianorOtherPacificIslander=="Y"), Race_Ethnicity_Combined := "Pacific Islander"]
New_Jersey_Data_LONG_2016[which(White=="Y"), Race_Ethnicity_Combined := "White"]
New_Jersey_Data_LONG_2016[which(TwoorMoreRaces=="Y"), Race_Ethnicity_Combined := "Two or More Races"]
New_Jersey_Data_LONG_2016[which(is.na(Race_Ethnicity_Combined)), Race_Ethnicity_Combined := "Other"]
New_Jersey_Data_LONG_2016[,
c("HispanicorLatinoEthnicity", "AmericanIndianorAlaskaNative", "Asian", "BlackorAfricanAmerican", "NativeHawaiianorOtherPacificIslander", "White", "TwoorMoreRaces") := NULL]
New_Jersey_Data_LONG_2016[,Gender:=as.factor(Gender)]
setattr(New_Jersey_Data_LONG_2016$Gender, "levels", c("Female", "Male"))
New_Jersey_Data_LONG_2016[Special_Education__SE_ == "", Special_Education__SE_ := as.character(NA)]
New_Jersey_Data_LONG_2016[Current_LEP == "", Current_LEP := as.character(NA)]
New_Jersey_Data_LONG_2016[,Current_LEP:=factor(Current_LEP)]
setattr(New_Jersey_Data_LONG_2016$Current_LEP, "levels", c("No", "Yes"))
New_Jersey_Data_LONG_2016[,Current_LEP:=as.character(Current_LEP)]
New_Jersey_Data_LONG_2016[Economically_Disadvantaged=="", Economically_Disadvantaged:=as.character(NA)]
New_Jersey_Data_LONG_2016[,Economically_Disadvantaged:=factor(Economically_Disadvantaged)]
setattr(New_Jersey_Data_LONG_2016$Economically_Disadvantaged, "levels", c("Economically Disadvantaged: No", "Economically Disadvantaged: Yes"))
New_Jersey_Data_LONG_2016[,Economically_Disadvantaged:=as.character(Economically_Disadvantaged)]
New_Jersey_Data_LONG_2016[Migrant == "", Migrant := as.character(NA)]
New_Jersey_Data_LONG_2016[,Migrant:=factor(Migrant)]
setattr(New_Jersey_Data_LONG_2016$Migrant, "levels", c("Migrant: No", "Migrant: Yes"))
New_Jersey_Data_LONG_2016[,Migrant:=as.character(Migrant)]
## School Number
New_Jersey_Data_LONG_2016[,SCHOOL_NUMBER:=paste(DISTRICT_NUMBER, SCHOOL_NUMBER, sep="")]
## District and School Names
New_Jersey_Data_LONG_2016[,DISTRICT_NAME:=as.factor(DISTRICT_NAME)]
setattr(New_Jersey_Data_LONG_2016$DISTRICT_NAME, "levels", sapply(levels(New_Jersey_Data_LONG_2016$DISTRICT_NAME), capwords))
New_Jersey_Data_LONG_2016[,SCHOOL_NAME:=as.factor(SCHOOL_NAME)]
setattr(New_Jersey_Data_LONG_2016$SCHOOL_NAME, "levels", sapply(levels(New_Jersey_Data_LONG_2016$SCHOOL_NAME), capwords))
## ENROLLMENT_STATUS
New_Jersey_Data_LONG_2016[,STATE_ENROLLMENT_STATUS:=factor(1, levels=0:1, labels=c("Enrolled State: No", "Enrolled State: Yes"))]
New_Jersey_Data_LONG_2016[,DISTRICT_ENROLLMENT_STATUS:=factor(1, levels=0:1, labels=c("Enrolled District: No", "Enrolled District: Yes"))]
New_Jersey_Data_LONG_2016[,SCHOOL_ENROLLMENT_STATUS:=factor(1, levels=0:1, labels=c("Enrolled School: No", "Enrolled School: Yes"))]
#### Set SCALE_SCORE to numeric and only include non-NA scores in long data
New_Jersey_Data_LONG_2016[,SCALE_SCORE:=as.numeric(SCALE_SCORE)]
New_Jersey_Data_LONG_2016[,SCALE_SCORE_ACTUAL:=as.numeric(SCALE_SCORE_ACTUAL)]
New_Jersey_Data_LONG_2016[,SCALE_SCORE_CSEM:=as.numeric(SCALE_SCORE_CSEM)]
# Load scaling constants
scaling.constants <- fread("Data/Base_Files/2015-2016 PARCC Scaling Constants.csv"))
setkey(scaling.constants, CONTENT_AREA, GRADE)
setkey(New_Jersey_Data_LONG_2015, CONTENT_AREA, GRADE)
New_Jersey_Data_LONG_2016 <- scaling.constants[New_Jersey_Data_LONG_2015]
setnames(New_Jersey_Data_LONG_2016, "SCALE_SCORE_CSEM", "SCALE_SCORE_CSEM_SS")
New_Jersey_Data_LONG_2016[,SCALE_SCORE_CSEM:=(as.numeric(SCALE_SCORE_CSEM_SS))/a]
New_Jersey_Data_LONG_2016[,a:=NULL]
New_Jersey_Data_LONG_2016[,b:=NULL]
###
### Indentify Valid Cases
###
New_Jersey_Data_LONG_2016[, VALID_CASE := "VALID_CASE"]
### Invalidate Cases with missing IDs - Not and issue with esIDs
New_Jersey_Data_LONG_2016[which(ID==""), VALID_CASE := "INVALID_CASE"]
### Invalidate Grades not used:
New_Jersey_Data_LONG_2016[!GRADE %in% 3:11 & CONTENT_AREA=="ELA", VALID_CASE := "INVALID_CASE"]
New_Jersey_Data_LONG_2016[!GRADE %in% 3:8 & CONTENT_AREA == "MATHEMATICS", VALID_CASE := "INVALID_CASE"]
### Invalidate Content Areas with too few students to analyze
New_Jersey_Data_LONG_2016[which(CONTENT_AREA %in% c("INTEGRATED_MATHEMATICS_I", "INTEGRATED_MATHEMATICS_II", "INTEGRATED_MATHEMATICS_III")), VALID_CASE := "INVALID_CASE"]
setkey(New_Jersey_Data_LONG_2016, VALID_CASE, CONTENT_AREA, ID, GRADE, SCALE_SCORE)
setkey(New_Jersey_Data_LONG_2016, VALID_CASE, CONTENT_AREA, ID)
New_Jersey_Data_LONG_2016[which(duplicated(New_Jersey_Data_LONG_2016, by=key(New_Jersey_Data_LONG_2016)))-1, VALID_CASE := "INVALID_CASE"]
### Save results
save(New_Jersey_Data_LONG_2016, file="Data/New_Jersey_Data_LONG_2016.Rdata")