-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2023_scraper.py
78 lines (65 loc) · 2.33 KB
/
2023_scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from selenium import webdriver
from bs4 import BeautifulSoup
import re
import pandas as pd
import numpy as np
import time
from tabulate import tabulate
import os
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.common.action_chains import ActionChains
#launch url
url = "https://247sports.com/season/2023-football/compositeteamrankings/"
# create a new Firefox session
driver = webdriver.Firefox(service_log_path = os.devnull)
driver.implicitly_wait(30)
driver.get(url)
#scroll down and click to load more
for n in range(10):
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
driver.implicitly_wait(120)
try:
python_button = driver.find_element_by_partial_link_text('Load')
except:
break
try:
python_button.click() #click link
except:
break
datalist = [] #empty list
#Selenium hands the page source to Beautiful Soup
soup_level1=BeautifulSoup(driver.page_source, "lxml")
table = soup_level1.find_all('li', attrs={'class':'rankings-page__list-item'})
i = 0
for i in range(len(table)):
try:
team = table[i].div.a.text.strip()
if team == '':
team = table[i].find('div', attrs={'class','team'}).text.strip()
except:
team = np.nan
total_commits = table[i].find('div', attrs={'class','total'}).text.split()[0]
five_star = table[i].ul.text.split()[1]
four_star = table[i].ul.text.split()[3]
try:
three_star = table[i].ul.text.split()[5]
except:
three_star = np.nan
datalist.append((team, total_commits, five_star, four_star, three_star))
#end the Selenium browser session
driver.quit()
#combine all pandas dataframes in the list into one big dataframe
result = pd.DataFrame(datalist, columns=['team', 'total_commits', 'five_star', 'four_star', 'three_star'])
#convert the pandas dataframe to JSON
json_records = result.to_json(orient='records')
#pretty print to CLI with tabulate
#converts to an ascii table
print(tabulate(result, headers=['team', 'total_commits', 'five_star', 'four_star', 'three_star'],tablefmt='psql'))
#get current working directory
path = os.getcwd()
#open, write, and close the file
f = open(os.path.join('data', '2023_data.json'), "w")
f.write(json_records)
f.close()