-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataScienceEcosystem.py
57 lines (36 loc) · 949 Bytes
/
DataScienceEcosystem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python
# coding: utf-8
# # Data Science Tools and Ecosystem
# ## In this notebook, Data Science Tools and Ecosystem are summarized.
# ### Some of the popular languages that Data Scientists use are:
# 1. Python
# 2. R
# 3. JavaScript
# **Objectives:**
# - List popular languages for Data Science
# - Using Rstudio
# - Using Github for control version
# - Jupyter notebook usage
# ### Some of the commonly used libraries used by Data Scientists include:
# 1. Pandas
# 2. Numpy
# 3. ggplot
# 4. dplyr
# | Data Science Tools |
# | -------- |
# | KNIME |
# | Hadoop |
# | Spark |
# | Pandas |
# | Ggplot2 |
#
# ### Below are a few examples of evaluating arithmetic expressions in Python
# In[1]:
#This a simple arithmetic expression to mutiply then add integers
(3 * 4) + 5
# In[2]:
# This will convert 200 minutes to hours by diving by 60
200 / 60
# ## Author
# Chun-Wa Law
# In[ ]: