forked from kmsmith137/ch_vdif_assembler
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrfi_histogrammer.cpp
427 lines (326 loc) · 10.6 KB
/
rfi_histogrammer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//
// rfi_histogrammer: this is work in progress toward real-time RFI analysis.
//
// The code is not cleaned up or commented systematically, so it's not a good
// reference for writing vdif_processors.
//
#include <cstring>
#include <stdexcept>
#include <hdf5.h>
#include "ch_vdif_assembler.hpp"
using namespace std;
// backwards compatibility hacks for HDF5 1.6
#if H5_VERS_MINOR == 6
# define H5Aiterate1 H5Aiterate
# define H5Acreate1 H5Acreate
# define H5Dopen1 H5Dopen
# define H5Dcreate1 H5Dcreate
# define H5Gcreate1 H5Gcreate
# define H5Eset_auto1 H5Eset_auto
# define H5Ewalk1 H5Ewalk
# define H5E_error1_t H5E_error_t
# define H5Gopen1 H5Gopen
#endif
namespace ch_vdif_assembler {
#if 0
}; // pacify emacs c-mode!
#endif
struct histogram {
int ifreq;
int pol;
int p;
int n;
double dx;
vector<int64_t> counts;
histogram(int ifreq, int pol, int p, int n, double dx);
inline void add(double val)
{
int i = (int)(min(val,n*dx) / dx);
i = max(i, 0);
i = min(i, n-1);
counts[i] += 1.0;
}
inline void add(double num1, double den1, double num2, double den2, double thresh, int64_t bin, int p)
{
// skip if noise source boundary is straddled
if ((bin % (1 << (23-p))) == 0)
return;
// skip if not enough samples
if ((den1 < thresh) || (den2 < thresh))
return;
double val = fabs(num1/den1 - num2/den2);
this->add(val);
}
};
histogram::histogram(int ifreq_, int pol_, int p_, int n_, double dx_)
: ifreq(ifreq_), pol(pol_), p(p_), n(n_), dx(dx_), counts(n_,0)
{
if (n <= 0)
throw runtime_error("bad value of n passed to histogram constructor");
if (dx <= 0)
throw runtime_error("bad value of dx passed to histogram constructor");
}
// -------------------------------------------------------------------------------------------------
struct histogram_set {
static const int pmin = 5;
static const int pmax = 18;
//
// buf is a shape-(pmax+1, 2, 2) array
// first index = p
// second index = time index in a 2-sample buffer
// third index = num/den
//
vector<double> buf;
// length (pmax+1)
vector<histogram> histograms;
bool empty;
int64_t tcurr;
histogram_set(int ifreq, int pol);
// not written for speed, intended as a reference
void add_sample(int64_t t, double vis);
// written to be fast, unit tested by comparing to add_sample()
void add_samples(int64_t t0, int nt, const float *vis, const int *counts, bool ref_flag=false);
// helper for add_samples()
void _add_binned_samples(int p, int64_t b0, int64_t b1, const double *vis_binned, const double *counts_binned);
void finalize();
};
histogram_set::histogram_set(int ifreq, int pol)
: buf(4*(pmax+1),0), empty(true), tcurr(0)
{
// dummy histograms
for (int p = 0; p < pmin; p++)
histograms.push_back(histogram(ifreq,pol,p,1,1));
for (int p = pmin; p <= pmax; p++) {
// reasonable defaults?
int n = 512;
double dx = 1. / pow(2,p/2.);
histograms.push_back(histogram(ifreq,pol,p,n,dx));
}
}
void histogram_set::add_sample(int64_t t, double vis)
{
if (empty) {
tcurr = t;
empty = false;
}
for (int p = pmin; p <= pmax; p++) {
int64_t pp = (1 << p);
double thresh = 0.5*(pp+1);
int64_t b = t/pp;
int64_t bcurr = tcurr/pp;
if (b <= bcurr) {
buf[4*p+2] += vis;
buf[4*p+3] += 1.0;
continue;
}
histograms[p].add(buf[4*p], buf[4*p+1], buf[4*p+2], buf[4*p+3], thresh, bcurr, p);
if (b == bcurr+1) {
buf[4*p] = buf[4*p+2];
buf[4*p+1] = buf[4*p+3];
}
else {
buf[4*p] = 0.0;
buf[4*p+1] = 0.0;
}
buf[4*p+2] = vis;
buf[4*p+3] = 1.0;
}
tcurr = t;
}
// assumes b0 < b1
void histogram_set::_add_binned_samples(int p, int64_t b0, int64_t b1, const double *vis_binned, const double *counts_binned)
{
int64_t pp = 1 << p;
int64_t bcurr = tcurr/pp;
double thresh = 0.5*(pp+1);
double *bufp = &buf[4*p];
histogram &histp = histograms[p];
if (b0 <= bcurr) {
// update current bin
bufp[2] += vis_binned[0];
bufp[3] += counts_binned[0];
vis_binned++;
counts_binned++;
b0 = bcurr + 1;
}
if (b1 <= bcurr+1)
return;
// if we get here, then bcurr < b0 < b1, i.e. we have data beyond the current bin
histp.add(bufp[0], bufp[1], bufp[2], bufp[3], thresh, bcurr, p);
if (b1 == bcurr+2) {
// if we get here, then (b0,b1)=(bcurr+1,bcurr+2), i.e. we're just extending by one partial bin
bufp[0] = bufp[2];
bufp[1] = bufp[3];
bufp[2] = vis_binned[0];
bufp[3] = counts_binned[0];
return;
}
if (b0 == bcurr+1) {
// if we get here, then we have bin (bcurr+1) and it is complete
histp.add(bufp[2], bufp[3], vis_binned[0], counts_binned[0], thresh, bcurr+1, p);
}
// OK if this loop is empty
for (int64_t b = b0; b <= b1-3; b++)
histp.add(vis_binned[b-b0], counts_binned[b-b0], vis_binned[b-b0+1], counts_binned[b-b0+1], thresh, b+1, p);
bufp[0] = (b1 >= b0+2) ? vis_binned[b1-b0-2] : 0.0;
bufp[1] = (b1 >= b0+2) ? counts_binned[b1-b0-2] : 0.0;
bufp[2] = vis_binned[b1-b0-1];
bufp[3] = counts_binned[b1-b0-1];
}
void histogram_set::add_samples(int64_t t0, int nt, const float *vis_arr, const int *flag_arr, bool ref_flag)
{
if (ref_flag) {
for (int i = 0; i < nt; i++) {
if (flag_arr[i])
this->add_sample(t0+i, vis_arr[i]);
}
return;
}
if (empty) {
tcurr = t0;
empty = false;
}
//
// First step: bin data to width 2^pmin
//
int64_t pp = (1 << pmin);
int64_t b0 = t0/pp; // start bin in data
int64_t b1 = (t0+nt-1)/pp + 1; // end bin in data
int64_t nb = b1 - b0; // number of bins spanned by data
// allocate temp arrays
vector<double> scratch(4*nb, 0);
double *vis_binned = &scratch[0];
double *counts_binned = &scratch[nb];
double *vis_tmp = &scratch[2*nb];
double *counts_tmp = &scratch[3*nb];
for (int64_t t = t0; t < t0+nt; t++) {
int64_t b = t/pp;
vis_binned[b-b0] += vis_arr[t-t0];
counts_binned[b-b0] += flag_arr[t-t0];
}
this->_add_binned_samples(pmin, b0, b1, vis_binned, counts_binned);
for (int p = pmin+1; p <= pmax; p++) {
//
// Rebin (p-1) -> p
//
int64_t new_b0 = b0/2;
int64_t new_b1 = (b1-1)/2 + 1;
memset(vis_tmp, 0, (new_b1-new_b0) * sizeof(double));
memset(counts_tmp, 0, (new_b1-new_b0) * sizeof(double));
for (int64_t b = b0; b < b1; b++) {
vis_tmp[(b/2)-new_b0] += vis_binned[b-b0];
counts_tmp[(b/2)-new_b0] += counts_binned[b-b0];
}
std::swap(vis_binned, vis_tmp);
std::swap(counts_binned, counts_tmp);
b0 = new_b0;
b1 = new_b1;
//
// Bin samples!
//
this->_add_binned_samples(p, b0, b1, vis_binned, counts_binned);
}
this->tcurr = t0+nt-1;
}
void histogram_set::finalize()
{
if (empty)
return;
for (int p = pmin; p <= pmax; p++) {
int64_t pp = (1 << p);
double thresh = 0.5*(pp+1);
histograms[p].add(buf[4*p], buf[4*p+1], buf[4*p+2], buf[4*p+3], thresh, tcurr/pp, p);
}
}
// -------------------------------------------------------------------------------------------------
struct rfi_histogrammer : public vdif_processor {
vector<histogram_set> histograms; // shape (nfreq, pol)
string output_hdf5_filename;
bool ref_flag;
// If @ref_flag is specified, then the reference implementation will be used (slow but simple code)
rfi_histogrammer(const string &output_hdf5_filename, bool is_critical, bool ref_flag);
void write_hdf5_file(const string &filename) const;
// Devirtualize vdif_assembler_callback
virtual void initialize() { }
virtual void process_chunk(const shared_ptr<assembled_chunk> &a);
virtual void finalize();
};
rfi_histogrammer::rfi_histogrammer(const string &output_hdf5_filename_, bool is_critical_, bool ref_flag_)
: vdif_processor("rfi_histogrammer", is_critical_),
output_hdf5_filename(output_hdf5_filename_),
ref_flag(ref_flag_)
{
for (int ifreq = 0; ifreq < 1024; ifreq++)
for (int pol = 0; pol < 2; pol++)
histograms.push_back(histogram_set(ifreq, pol));
if (ref_flag)
cerr << "Note: using rfi_histogrammer reference implementation\n";
}
void rfi_histogrammer::write_hdf5_file(const string &filename) const
{
hid_t file_id = H5Fcreate(filename.c_str(), H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
if (file_id < 0) {
cerr << "Fatal: couldn't create HDF5 file " << filename << endl;
exit(1);
}
hid_t group_id = H5Gopen1(file_id, ".");
xassert(group_id >= 0);
for (int p = histogram_set::pmin; p <= histogram_set::pmax; p++) {
// use single precision floating-point to allow large dynamic range while saving disk space
int nbins = this->histograms[0].histograms[p].n;
vector<float> all_counts(histograms.size() * nbins, 0);
for (unsigned int i = 0; i < histograms.size(); i++) {
const histogram &h = this->histograms[i].histograms[p];
xassert(h.n == nbins);
for (int j = 0; j < nbins; j++)
all_counts[i*nbins + j] = (float)h.counts[j];
}
vector<hsize_t> shape(3);
shape[0] = 1024; // frequency
shape[1] = 2; // polarization
shape[2] = nbins;
hid_t dataspace_id = H5Screate(H5S_SIMPLE);
xassert(dataspace_id >= 0);
int ret = H5Sset_extent_simple(dataspace_id, 3, &shape[0], &shape[0]);
xassert(ret >= 0);
stringstream s;
s << "BIN" << (1 << p);
string dataset_name = s.str();
hid_t dataset_id = H5Dcreate1(group_id, dataset_name.c_str(), H5T_NATIVE_FLOAT, dataspace_id, H5P_DEFAULT);
xassert(dataset_id >= 0);
ret = H5Dwrite(dataset_id, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &all_counts[0]);
xassert(ret >= 0);
cerr << filename << ": wrote shape (1024,2," << nbins << ") array\n";
}
H5Fclose(file_id);
cerr << filename << ": closed file\n";
}
void rfi_histogrammer::process_chunk(const shared_ptr<assembled_chunk> &chunk)
{
int nt = chunk->nt;
int64_t t0 = chunk->t0;
vector<float> vis(2048 * nt, 0);
vector<int> mask(2048 * nt, 0);
chunk->fill_auto_correlations_reference(&vis[0], &mask[0]);
for (int ifreq = 0; ifreq < 1024; ifreq++) {
histograms[2*ifreq].add_samples(t0, nt, &vis[2*ifreq*nt], &mask[2*ifreq*nt], this->ref_flag);
histograms[2*ifreq+1].add_samples(t0, nt, &vis[(2*ifreq+1)*nt], &mask[(2*ifreq+1)*nt], this->ref_flag);
}
}
// empty for now
void rfi_histogrammer::finalize()
{
for (unsigned int i = 0; i < histograms.size(); i++)
histograms[i].finalize();
this->write_hdf5_file(output_hdf5_filename);
}
shared_ptr<vdif_processor> make_rfi_histogrammer(const string &output_hdf5_filename, bool is_critical, bool ref_flag)
{
return make_shared<rfi_histogrammer> (output_hdf5_filename, is_critical, ref_flag);
}
} // namespace ch_vdif_assembler
/*
* Local variables:
* c-basic-offset: 4
* End:
*/