-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathintensity_packet.cpp
220 lines (173 loc) · 7.1 KB
/
intensity_packet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#include <cassert>
#include <iostream>
#include "ch_frb_io_internals.hpp"
using namespace std;
namespace ch_frb_io {
#if 0
}; // pacify emacs c-mode!
#endif
// Initializes a 'struct intensity_packet' from raw packet data. The "pointer" fields of the
// struct intensity_packet are initialized to pointers into the 'src' buffer, so the caller is
// responsible for ensuring that this buffer doesn't get freed while the struct intensity_packet
// is in scope.
//
// Does a bunch of sanity checks and returns 'true' if packet is good, 'false' if bad.
//
// Explicitly, the following checks are performed:
// - protocol version == 1
// - dimensions (nbeams, nfreq_coarse, nupfreq, ntsamp) are not large enough to lead to integer overflows
// - packet and data byte counts are correct
// - coarse_freq_ids are in range
// - ntsamp is a power of two, and in the range (0,max_allowed_nt_per_packet].
// - nbeams, nfreq_coarse, nupfreq, ntsamp, fpga_counts_per_sample are all > 0
// - fpga_count is a multiple of (fpga_counts_per_sample * ntsamp)
bool intensity_packet::decode(const uint8_t *src, int src_nbytes)
{
if (_unlikely(src_nbytes < 24))
return false;
if (_unlikely(src_nbytes > constants::max_input_udp_packet_size))
return false;
memcpy(this, src, 24);
if (_unlikely(protocol_version != 1))
return false;
if (_unlikely((ntsamp > constants::max_allowed_nt_per_packet) || ((ntsamp & (ntsamp-1)) != 0)))
return false;
if (_unlikely(fpga_counts_per_sample == 0))
return false;
// Note conversions to uint64_t, to prevent integer overflow
uint64_t fpga_counts_per_packet = uint64_t(fpga_counts_per_sample) * uint64_t(ntsamp);
if (_unlikely(fpga_count % fpga_counts_per_packet != 0))
return false;
uint64_t n1 = uint64_t(nbeams);
uint64_t n2 = uint64_t(nfreq_coarse);
uint64_t n3 = uint64_t(nupfreq);
uint64_t n4 = uint64_t(ntsamp);
// Expected header, data size
uint64_t nh = 24 + 2*n1 + 2*n2 + 8*n1*n2;
uint64_t nd = n1 * n2 * n3 * n4;
if (_unlikely(uint64_t(src_nbytes) != nh+nd))
return false;
if (_unlikely(uint64_t(data_nbytes) != nd))
return false;
this->beam_ids = (uint16_t *) (src + 24);
this->coarse_freq_ids = (uint16_t *) (src + 24 + 2*n1);
this->scales = (float *) (src + 24 + 2*n1 + 2*n2);
this->offsets = (float *) (src + 24 + 2*n1 + 2*n2 + 4*n1*n2);
this->data = (uint8_t *) (src + nh);
for (int i = 0; i < nfreq_coarse; i++)
if (_unlikely(coarse_freq_ids[i] >= constants::nfreq_coarse_tot))
return false;
return true;
}
// Encodes a floating-point array of intensities into raw packet data, before sending packet.
// The precise semantics aren't very intuitive, see extended comment in ch_frb_io_internals.hpp for details!
int intensity_packet::encode(uint8_t *dst, const float *intensity, int beam_istride, int freq_istride, const float *weights, int beam_wstride, int freq_wstride, float wt_cutoff)
{
int nb = this->nbeams;
int nf = this->nfreq_coarse;
int nu = this->nupfreq;
int nt = this->ntsamp;
memcpy(dst, this, 24);
memcpy(dst + 24, this->beam_ids, 2*nb);
memcpy(dst + 24 + 2*nb, this->coarse_freq_ids, 2*nf);
this->scales = (float *) (dst + 24 + 2*nb + 2*nf);
this->offsets = (float *) (dst + 24 + 2*nb + 2*nf + 4*nb*nf);
this->data = dst + 24 + 2*nb + 2*nf + 8*nb*nf;
for (int b = 0; b < nb; b++) {
for (int f = 0; f < nf; f++) {
uint8_t *sub_data = data + (b*nf+f) * (nu*nt);
const float *sub_int = intensity + b*beam_istride + f*nu*freq_istride;
const float *sub_wt = weights + b*beam_wstride + f*nu*freq_wstride;
float acc0 = 0.0;
float acc1 = 0.0;
float acc2 = 0.0;
for (int u = 0; u < nu; u++) {
for (int t = 0; t < nt; t++) {
float x = sub_int[u*freq_istride+t];
float w = (sub_wt[u*freq_wstride+t] >= wt_cutoff) ? 1.0 : 0.0;
acc0 += w;
acc1 += w * x;
acc2 += w * x * x;
}
}
if (acc0 <= 0.0) {
this->scales[b*nf+f] = 1.0;
this->offsets[b*nf+f] = 0.0;
memset(sub_data, 0, nu*nt);
continue;
}
float mean = acc1/acc0;
float var = acc2/acc0 - mean*mean;
// Since we use single precision, the numerical error in 'var' is approx (1.0e-7 * mean*mean),
// so we need to regulate values of 'var' which are of this order or smaller. The radiometer
// equation predicts that the ideal variance is (1.0e-3 * mean*mean) or more, depending on
// the correlator configuration. We choose a regulator which is safely in between these values.
var = max(var, float(1.0e-5) * mean*mean);
float scale = sqrt(var) / 25.;
float offset = -128.*scale + mean; // 0x80 -> mean
this->scales[b*nf+f] = scale;
this->offsets[b*nf+f] = offset;
for (int u = 0; u < nu; u++) {
for (int t = 0; t < nt; t++) {
float x = sub_int[u*freq_istride+t];
float w = (sub_wt[u*freq_wstride+t] >= wt_cutoff) ? 1.0 : 0.0;
x = w * (x - offset) / scale;
x = min(x, float(255.));
x = max(x, float(0.));
sub_data[u*nt+t] = uint8_t(x+0.5); // round to nearest integer
}
}
}
}
return 24 + 2*nb + 2*nf + 8*nb*nf + nb*nf*nu*nt;
}
int intensity_packet::find_coarse_freq_id(int id) const
{
for (int i = 0; i < this->nfreq_coarse; i++)
if (this->coarse_freq_ids[i] == id)
return i;
return -1;
}
bool intensity_packet::contains_coarse_freq_id(int id) const
{
int i = this->find_coarse_freq_id(id);
return (i >= 0);
}
// This test is kinda silly, but checks that the byte alignment of the intensity_packet header fields
// is what I think it is. (Just worried that the compiler might insert some padding bytes.)
void test_packet_offsets(std::mt19937 &rng)
{
cerr << "test_packet_offsets()...";
vector<uint8_t> buf(24, 0);
for (int iouter = 0; iouter < 1000; iouter++) {
intensity_packet p;
// Randomized header fields
uint32_t protocol_version = std::uniform_int_distribution<uint32_t>()(rng);
int16_t data_nbytes = std::uniform_int_distribution<int16_t>()(rng);
uint16_t fpga_counts_per_sample = std::uniform_int_distribution<uint16_t>()(rng);
uint64_t fpga_count = std::uniform_int_distribution<uint64_t>()(rng);
uint16_t nbeams = std::uniform_int_distribution<uint16_t>()(rng);
uint16_t nfreq_coarse = std::uniform_int_distribution<uint16_t>()(rng);
uint16_t nupfreq = std::uniform_int_distribution<uint16_t>()(rng);
uint16_t ntsamp = std::uniform_int_distribution<uint16_t>()(rng);
*((uint32_t *) &buf[0]) = protocol_version;
*((int16_t *) &buf[4]) = data_nbytes;
*((uint16_t *) &buf[6]) = fpga_counts_per_sample;
*((uint64_t *) &buf[8]) = fpga_count;
*((uint16_t *) &buf[16]) = nbeams;
*((uint16_t *) &buf[18]) = nfreq_coarse;
*((uint16_t *) &buf[20]) = nupfreq;
*((uint16_t *) &buf[22]) = ntsamp;
memcpy(&p, &buf[0], 24);
assert(p.protocol_version == protocol_version);
assert(p.data_nbytes == data_nbytes);
assert(p.fpga_counts_per_sample == fpga_counts_per_sample);
assert(p.fpga_count == fpga_count);
assert(p.nbeams == nbeams);
assert(p.nfreq_coarse == nfreq_coarse);
assert(p.nupfreq == nupfreq);
assert(p.ntsamp == ntsamp);
}
cerr << "success\n";
}
} // namespace ch_frb_io