-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathavx2_kernels.cpp
1566 lines (1202 loc) · 54.6 KB
/
avx2_kernels.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file contains assembly language kernels for packet assembly and decoding.
// These kernels improve bottom-line performance of the network front end by ~30%.
// It might be possible to improve further, using memory access optimizations such
// as streaming writes and aligned loads/stores (reference: chapter 7 of the Intel
// optimization manual).
//
// I didn't bother writing assembly language kernels for packet _encoding_, since
// this code is used only for testing, and performance isn't as critical.
//
// The assembly language kernels make assumptions on the packet parameters:
// nt_per_packet must be equal to 16, and nupfreq must be even. According to
// a recent email from Andre, these assumptions may not hold up, in which case
// we may need to write more kernels!
//
// The fast kernels are called using the following mechanism. The member functions
// assembled_chunk::add_packet(), assembled_chunk::decode() are virtual. When an
// assembled_chunk is allocated, we test whether the packet parameters (nt_per_packet,
// nupfreq) satisfy the constraints which permit fast kernels. If so, then we allocate
// a special subclass fast_assembled_chunk which overrides the virtuals and calls the
// fast kernels. Thus, this source file is responsible for defining the functions
// fast_assembled_chunk::add_packet() and fast_assembled_chunk::decode().
#include <cassert>
#include <iomanip>
#include <algorithm>
#include "ch_frb_io_internals.hpp"
using namespace std;
namespace ch_frb_io {
#if 0
}; // pacify emacs c-mode!
#endif
#ifndef __AVX2__
// If compiling on a machine without the AVX2 instruction set, we include some placeholder routines
fast_assembled_chunk::fast_assembled_chunk(const assembled_chunk::initializer &ini_params) :
assembled_chunk(ini_params)
{
throw runtime_error("ch_frb_io: fast kernels not available (non-AVX2 machine), you need to use slow kernels");
}
fast_assembled_chunk::~fast_assembled_chunk() { }
void fast_assembled_chunk::add_packet(const intensity_packet &packet)
{
throw runtime_error("ch_frb_io: fast kernels not available (non-AVX2 machine), you need to use slow kernels");
}
void fast_assembled_chunk::decode(float *intensity, float *weights, int istride, int wstride) const
{
throw runtime_error("ch_frb_io: internal error: fast_assembled_chunk::decode() called on a non-AVX2 machine");
}
void fast_assembled_chunk::downsample(const assembled_chunk *src1, const assembled_chunk *src2)
{
throw runtime_error("ch_frb_io: internal error: fast_assembled_chunk::downsample() called on a non-AVX2 machine");
}
void test_avx2_kernels(std::mt19937 &rng)
{
cerr << "test_avx2_kernels(): this machine does not have the AVX2 instruction set, nothing to do\n";
}
#else // __AVX2__
#include <immintrin.h>
// -------------------------------------------------------------------------------------------------
//
// Utils
// Given 128-bit SIMD register which holds 4 single-precision floats, extract the N-th float
template<unsigned int N>
inline float _extract128(__m128 x)
{
// _mm_extract_ps() returns int instead of float?!
union { int i; float x; } u;
u.i = _mm_extract_ps(x, N);
return u.x;
}
// Given 256-bit SIMD register which holds 8 single-precision floats, extract the N-th float
template<unsigned int N>
inline float _extract256(__m256 x)
{
__m128 x2 = _mm256_extractf128_ps(x, N/4);
return _extract128<N%4> (x2);
}
// These functions return string representations of SIMD registers, for debugging:
// _vstr8_partial: 256-bit SIMD register which holds 32 8-bit integers
// _vstr32_partial: 256-bit SIMD register which holds 8 32-bit integers
// _vstrps_partial: 256-bit SIMD register which holds 8 single-precision floats
template<unsigned int N> inline void _vstr8_partial(stringstream &ss, __m256i x, bool hexflag);
template<unsigned int N> inline void _vstr32_partial(stringstream &ss, __m256i x, bool hexflag);
template<unsigned int N> inline void _vstrps_partial(stringstream &ss, __m256 x);
template<> inline void _vstr8_partial<0>(stringstream &ss, __m256i x, bool hex) { return; }
template<> inline void _vstr32_partial<0>(stringstream &ss, __m256i x, bool hex) { return; }
template<> inline void _vstrps_partial<0>(stringstream &ss, __m256 x) { return; }
template<unsigned int N>
inline void _vstr8_partial(stringstream &ss, __m256i x, bool hexflag)
{
_vstr8_partial<N-1>(ss, x, hexflag);
if (hexflag)
ss << " " << setfill('0') << setw(2) << hex << uint32_t(uint8_t(_mm256_extract_epi8(x,N-1)));
else
ss << " " << int32_t(_mm256_extract_epi8(x,N-1));
}
template<unsigned int N>
inline void _vstr32_partial(stringstream &ss, __m256i x, bool hexflag)
{
_vstr32_partial<N-1>(ss, x, hexflag);
if (hexflag)
ss << " " << setfill('0') << setw(8) << hex << uint32_t(_mm256_extract_epi32(x,N-1));
else
ss << " " << _mm256_extract_epi32(x,N-1);
}
template<unsigned int N>
inline void _vstrps_partial(stringstream &ss, __m256 x)
{
_vstrps_partial<N-1>(ss, x);
ss << " " << _extract256<N-1>(x);
}
inline string _vstr8(__m256i x, bool hexflag=true)
{
stringstream ss;
ss << "[";
_vstr8_partial<32> (ss, x, hexflag);
ss << " ]";
return ss.str();
}
inline string _vstr32(__m256i x, bool hexflag=false)
{
stringstream ss;
ss << "[";
_vstr32_partial<8> (ss, x, hexflag);
ss << " ]";
return ss.str();
}
inline string _vstr(__m256 x)
{
stringstream ss;
ss << "[";
_vstrps_partial<8> (ss, x);
ss << " ]";
return ss.str();
}
// -------------------------------------------------------------------------------------------------
// incremental_downsample8: a helper class for the downsampling kernels.
//
// Incrementally "absorbs" a float32[64], represented as eight __m256's,
// downsamples float32[8], and returns the result as an __m256.
struct incremental_downsample8
{
__m256 x0;
__m256 x1;
__m256 x2;
static inline __m256 f(__m256 a, __m256 b) { return _mm256_shuffle_ps(a, b, 0x88) + _mm256_shuffle_ps(a, b, 0xdd); }
// After add<7>(), the downsampled vector is 'x0'.
template<int N> inline void add(__m256 x);
// These only make sense to call after add<7>().
inline void store(float *p) { _mm256_store_ps(p, x0); }
inline void update(float *p) { _mm256_store_ps(p, x0 + _mm256_load_ps(p)); }
};
template<> inline void incremental_downsample8::add<0> (__m256 x) { x0 = x; }
template<> inline void incremental_downsample8::add<1> (__m256 x) { x1 = f(x0,x); }
template<> inline void incremental_downsample8::add<2> (__m256 x) { x0 = x; }
template<> inline void incremental_downsample8::add<3> (__m256 x) { x2 = f(x1,f(x0,x)); }
template<> inline void incremental_downsample8::add<4> (__m256 x) { x0 = x; }
template<> inline void incremental_downsample8::add<5> (__m256 x) { x1 = f(x0,x); }
template<> inline void incremental_downsample8::add<6> (__m256 x) { x0 = x; }
template<> inline void incremental_downsample8::add<7> (__m256 x)
{
x0 = f(x1,f(x0,x));
x0 = _mm256_blend_ps(x2, x0, 0xf0) + _mm256_permute2f128_ps(x2, x0, 0x21);
}
// incremental_upsample8: a helper class for the downsampling kernels.
//
// Loads a float32[8] from memory, and allows caller to request a constant
// __m256 containing any of the 8 floats (repeated 8 times).
//
// Note: constructor assumes 'p' is an aligned pointer!!
struct incremental_upsample8 {
__m256 x0; // [x0 x0]
__m256 x1; // [x1 x1]
incremental_upsample8(__m256 x01)
{
__m256 x10 = _mm256_permute2f128_ps(x01, x01, 0x01); // [x1 x0]
x0 = _mm256_blend_ps(x01, x10, 0xf0); // [x0 x0]
x1 = _mm256_blend_ps(x01, x10, 0x0f); // [x1 x1]
}
incremental_upsample8(const float *p)
: incremental_upsample8(_mm256_load_ps(p))
{ }
incremental_upsample8(const float *p, float c)
: incremental_upsample8(_mm256_load_ps(p) * _mm256_set1_ps(c))
{ }
template<int N> inline __m256 get();
};
template<> inline __m256 incremental_upsample8::get<0>() { return _mm256_permute_ps(x0, 0x00); } // (0000)_4
template<> inline __m256 incremental_upsample8::get<1>() { return _mm256_permute_ps(x0, 0x55); } // (1111)_4
template<> inline __m256 incremental_upsample8::get<2>() { return _mm256_permute_ps(x0, 0xaa); } // (2222)_4
template<> inline __m256 incremental_upsample8::get<3>() { return _mm256_permute_ps(x0, 0xff); } // (3333)_4
template<> inline __m256 incremental_upsample8::get<4>() { return _mm256_permute_ps(x1, 0x00); }
template<> inline __m256 incremental_upsample8::get<5>() { return _mm256_permute_ps(x1, 0x55); }
template<> inline __m256 incremental_upsample8::get<6>() { return _mm256_permute_ps(x1, 0xaa); }
template<> inline __m256 incremental_upsample8::get<7>() { return _mm256_permute_ps(x1, 0xff); }
// -------------------------------------------------------------------------------------------------
//
// add_packet_kernel()
//
// Just copies src -> dst, where both 'src' and 'dst' are logical 2D arrays of shape (nupfreq, 16).
// The src array has frequency stride 16, as appropriate for a "close-packed" array.
// The dst array has frequency stride nt_per_assembled_chunk, as appopriate for an assembled_chunk subarray.
// The kernel assumes nt_per_packet=16, and nupfreq is even.
inline void _add_packet_kernel(uint8_t *dst, const uint8_t *src, int nupfreq)
{
constexpr int s = constants::nt_per_assembled_chunk;
for (int i = 0; i < nupfreq; i += 2) {
__m256i x = _mm256_loadu_si256((const __m256i *) (src + 16*i));
__m128i x0 = _mm256_extractf128_si256(x, 0);
__m128i x1 = _mm256_extractf128_si256(x, 1);
// I checked that _mm_store_si128() is faster than _mm_stream_si128() here.
_mm_store_si128((__m128i *) (dst + i*s), x0);
_mm_store_si128((__m128i *) (dst + (i+1)*s), x1);
}
}
// -------------------------------------------------------------------------------------------------
//
// Decode kernels
//
// This ended up being only arginally faster than the reference decode kernel!
// One thing that may help is switching to aligned loads/stores throughout (need to change rf_pipelines
// first though).
struct decoder {
const __m256 f1;
const __m256i i255;
const __m256i ctl;
decoder() :
f1(_mm256_set1_ps(1.0)),
i255(_mm256_set1_epi32(255)),
ctl(_mm256_set_epi8(11,3,15,7,10,2,14,6,9,1,13,5,8,0,12,4,
11,3,15,7,10,2,14,6,9,1,13,5,8,0,12,4))
{ }
// Note that mask32 uses reversed convention: 0 if valid, 0xff if invalid
inline void decode8(float *intensity, float *weights, __m256i data32, __m256i mask32, __m256 scales, __m256 offsets)
{
__m256 x = _mm256_cvtepi32_ps(data32);
_mm256_storeu_ps(intensity, scales*x + offsets);
__m256 m = _mm256_castsi256_ps(_mm256_cmpeq_epi32(mask32, _mm256_setzero_si256()));
_mm256_storeu_ps(weights, _mm256_and_ps(f1,m));
}
template<int N>
inline void decode32(float *intensity, float *weights, const uint8_t *data, incremental_upsample8 &scales, incremental_upsample8 &offsets)
{
__m256i x = _mm256_load_si256((const __m256i *) data);
// x4 x5 x6 x7 x0 x1 x2 x3 x12 x13 x14 x15 x8 x9 x10 x11
// x20 x21 x22 x23 x16 x17 x18 x19 x28 x29 x30 x31 x24 x25 x26 x27
__m256i y = _mm256_shuffle_epi32(x, 0xb1); // (2301)_4
// [ x16 ... x31 x0 ... x8 ]
__m256i z = _mm256_permute2f128_si256(x, x, 0x01);
// x16 x17 x18 x19 x0 x1 x2 x3 x24 x25 x26 x27 x8 x9 x10 x11
// x20 x21 x22 x23 x4 x5 x6 x7 x28 x29 x30 x31 x12 x13 x14 x15
__m256i d = _mm256_blend_epi32(y, z, 0xa5); // (10100101)_2
// x0 x8 x16 x24 x1 x9 x17 x25 x2 x10 x18 x26 x3 x11 x19 x27
// x4 x12 x20 x28 x5 x13 x21 x29 x6 x11 x19 x27 x7 x15 x23 x31
d = _mm256_shuffle_epi8(d, ctl);
__m256i m0 = _mm256_cmpeq_epi8(d, _mm256_setzero_si256());
__m256i m1 = _mm256_cmpeq_epi8(d, _mm256_set1_epi8(-1));
__m256i m = _mm256_or_si256(m0, m1); // 0xff if masked, 0x00 if valid
__m256 sca0 = scales.get<2*N> ();
__m256 off0 = offsets.get<2*N> ();
__m256i d32 = _mm256_and_si256(d,i255);
__m256i m32 = _mm256_and_si256(m,i255);
decode8(intensity, weights, d32, m32, sca0, off0);
d32 = _mm256_and_si256(_mm256_srli_epi32(d,8), i255);
m32 = _mm256_and_si256(_mm256_srli_epi32(m,8), i255);
decode8(intensity+8, weights+8, d32, m32, sca0, off0);
sca0 = scales.get<2*N+1> ();
off0 = offsets.get<2*N+1> ();
d32 = _mm256_and_si256(_mm256_srli_epi32(d,16), i255);
m32 = _mm256_and_si256(_mm256_srli_epi32(m,16), i255);
decode8(intensity+16, weights+16, d32, m32, sca0, off0);
d32 = _mm256_srli_epi32(d,24);
m32 = _mm256_srli_epi32(m,24);
decode8(intensity+24, weights+24, d32, m32, sca0, off0);
}
inline void decode128(float *intensity, float *weights, const uint8_t *data, const float *scales, const float *offsets, float prescale)
{
incremental_upsample8 sca(scales, prescale);
incremental_upsample8 off(offsets, prescale);
decode32<0> (intensity, weights, data, sca, off);
decode32<1> (intensity+32, weights+32, data+32, sca, off);
decode32<2> (intensity+64, weights+64, data+64, sca, off);
decode32<3> (intensity+96, weights+96, data+96, sca, off);
}
inline void decode_row(float *intensity, float *weights, const uint8_t *data, const float *scales, const float *offsets, float prescale)
{
static_assert(constants::nt_per_assembled_chunk % 128 == 0, "_decode_kernel() assumes nt_per_assembled_chunk divisible by 128");
constexpr int n = constants::nt_per_assembled_chunk / 128;
for (int i = 0; i < n; i++)
decode128(intensity + i*128, weights + i*128, data + i*128, scales + i*8, offsets + i*8, prescale);
}
};
// -------------------------------------------------------------------------------------------------
//
// Fast downsampling kernels start here, and continue for a while!
// _extract_16_8: a helper class for the downsampling kernels.
//
// Takes a uint16[32] array (represented as two __m256i's), extracts the low 8 bits from each element,
// and outputs a uint8[32] array (represented at __m256i).
struct _extract_16_8 {
const __m256i ctl0;
const __m256i ctl1;
_extract_16_8() :
ctl0(_mm256_set_epi8(0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff)),
ctl1(_mm256_set_epi8(0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00))
{ }
inline __m256i extract(__m256i x, __m256i y)
{
x = _mm256_shuffle_epi8(x, ctl0); // [ 0 x0 0 x1 ]
y = _mm256_shuffle_epi8(y, ctl1); // [ y0 0 y1 0 ]
__m256i z = _mm256_blend_epi32(x, y, 0x33); // [ y0 x0 y1 x1 ]. Note 0x33 = (00110011)_2
// To finish the kernel, we just need to output [ x0 x1 y0 y1 ]
__m256i u = _mm256_shuffle_epi32(z, 0x4e); // [ x0 y0 x1 y1 ]. Note 0x4e = (1032)_4
__m256i v = _mm256_permute2x128_si256(z, z, 0x01); // [ y1 x1 y0 x0 ]
return _mm256_blend_epi32(u, v, 0x3c); // [ x0 x1 y0 y1 ]
}
};
// _extract_32_8: a helper class for the downsampling kernels.
//
// Takes a uint32[32] array (represented as four __m256i's), extracts the low 8 bits from each
// element, and outputs a uint8[32] array (represented as __m256i).
struct _extract_32_8 {
const __m256i ctl0;
const __m256i ctl1;
unsigned int saved_rounding_mode;
_extract_32_8() :
ctl0(_mm256_set_epi8(0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x0c, 0x08, 0x04, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x0c, 0x08, 0x04, 0x00)),
ctl1(_mm256_set_epi8(0x0c, 0x08, 0x04, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x0c, 0x08, 0x04, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff))
{
this->saved_rounding_mode = _MM_GET_ROUNDING_MODE();
_MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST);
}
~_extract_32_8()
{
_MM_SET_ROUNDING_MODE(saved_rounding_mode);
}
inline __m256i extract(__m256 a, __m256 b, __m256 c, __m256 d)
{
__m256 f0 = _mm256_setzero_ps();
__m256 f255 = _mm256_set1_ps(255.0);
a = _mm256_min_ps(_mm256_max_ps(a, f0), f255);
b = _mm256_min_ps(_mm256_max_ps(b, f0), f255);
c = _mm256_min_ps(_mm256_max_ps(c, f0), f255);
d = _mm256_min_ps(_mm256_max_ps(d, f0), f255);
__m256i ai = _mm256_cvtps_epi32(a);
__m256i bi = _mm256_cvtps_epi32(b);
__m256i ci = _mm256_cvtps_epi32(c);
__m256i di = _mm256_cvtps_epi32(d);
ai = _mm256_shuffle_epi8(ai, ctl0); // [ a0 0 0 0 0 a1 0 0 ]
bi = _mm256_shuffle_epi8(bi, ctl1); // [ 0 0 b0 0 0 0 0 b1 ]
ci = _mm256_shuffle_epi8(ci, ctl0); // [ c0 0 0 0 0 c1 0 0 ]
di = _mm256_shuffle_epi8(di, ctl1); // [ 0 0 d0 0 0 0 0 d1 ]
ai = _mm256_blend_epi32(ai, bi, 0xcc); // [ a0 0 b0 0 0 a1 0 b1 ]. Note 0xcc = (11001100)_2
ci = _mm256_blend_epi32(ci, di, 0xcc); // [ c0 0 d0 0 0 c1 0 d1 ].
__m256i t = _mm256_blend_epi32(ai, ci, 0xf0); // [ a0 0 b0 0 0 c1 0 d1 ]
__m256i u = _mm256_blend_epi32(ai, ci, 0x0f); // [ c0 0 d0 0 0 a1 0 b1 ]
u = _mm256_permute2x128_si256(u, u, 0x01); // [ 0 a1 0 b1 c0 0 d0 0 ]
return _mm256_blend_epi32(t, u, 0x5a); // [ a0 a1 b0 b1 c0 c1 d0 d1 ]. Note 0x5a = (01011010)_2
}
};
// Helper function called by _kernel1a().
inline __m256 _unpack_16bit_data(__m128i x, __m256 offset, __m256 scale)
{
__m256i y = _mm256_cvtepi16_epi32(x);
__m256 z = _mm256_cvtepi32_ps(y);
return scale * z + offset;
}
// Decode kernel.
// Reads 32 input data values (uint8).
// Reads 2 offset values, by calling offset.get<2N> and offset.get<2N+1>
// Reads 2 (scale/2) values, by calling scales2.get<2N> and scales2.get<2N+1>
// Writes 1 logical count value, by calling out_count.add<N>
// Writes 1 logical mean value, by calling out_mean.add<N>
template<int N>
inline void _ds_kernel1a(float *out_data, int *out_mask, const uint8_t *in_data,
incremental_upsample8 &in_offset, incremental_upsample8 &in_scale2,
incremental_downsample8 &out_count, incremental_downsample8 &out_mean)
{
static constexpr int N2 = (2*N) % 8;
__m256i all_ones = _mm256_set1_epi8(0xff);
// 8-bit input data
__m256i d8 = _mm256_load_si256((const __m256i *) in_data);
// 8-bit mask (actually the mask complement: 0x00 means "OK", 0xff means "invalid".
__m256i m8a = _mm256_cmpeq_epi8(d8, _mm256_setzero_si256());
__m256i m8b = _mm256_cmpeq_epi8(d8, all_ones);
__m256i m8c = _mm256_or_si256(m8a, m8b);
// 16-bit output data
__m256i d16a = _mm256_and_si256(d8, _mm256_set1_epi16(0xff));
__m256i d16b = _mm256_srli_epi16(d8, 8);
__m256i d16 = _mm256_add_epi16(d16a, d16b);
// 16-bit mask
__m256i m16 = m8c;
m16 = _mm256_or_si256(m16, _mm256_slli_epi16(m8c,8)); // shift left
m16 = _mm256_or_si256(m16, _mm256_srli_epi16(m8c,8)); // shift right
m16 = _mm256_xor_si256(m16, all_ones);
// Unpack output data to pair (float32[8], float32[8])
__m256 x0 = _unpack_16bit_data(_mm256_extracti128_si256(d16,0), in_offset.get<N2>(), in_scale2.get<N2>());
__m256 x1 = _unpack_16bit_data(_mm256_extracti128_si256(d16,1), in_offset.get<N2+1>(), in_scale2.get<N2+1>());
// Unpack 16-bit output mask to pair (int32[8], int32[8])
__m256i m0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(m16,0));
__m256i m1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(m16,1));
// May as well apply mask here, since we need to do it before computing 'out_mean' anyway.
x0 = _mm256_and_ps(x0, _mm256_castsi256_ps(m0));
x1 = _mm256_and_ps(x1, _mm256_castsi256_ps(m1));
// Write out_data
_mm256_store_ps(out_data, x0);
_mm256_store_ps(out_data+8, x1);
// Write out_mask
_mm256_store_si256((__m256i *) (out_mask), m0);
_mm256_store_si256((__m256i *) (out_mask+8), m1);
// Write out_count.
__m256i count = _mm256_add_epi32(m0, m1);
count = _mm256_sub_epi32(_mm256_setzero_si256(), count);
out_count.add<N> (_mm256_cvtepi32_ps(count));
// Write out_mean
out_mean.add<N> (x0+x1);
}
// Reads 256 input data values (uint8).
// Reads 16 scale values (float32)
// Reads 16 offset values (float32)
// Writes 128 output data values (float32, scale/offset applied).
// Writes 128 output mask values (int32).
// Updates (not writes!) 8 mean values
// Updates (not writes!) 8 count values
inline void _ds_kernel1b(float *out_data, int *out_mask, const uint8_t *in_data,
const float *in_offset, const float *in_scale,
float *update_count, float *update_mean)
{
incremental_downsample8 count;
incremental_downsample8 mean;
incremental_upsample8 offset0(in_offset);
incremental_upsample8 scale0(in_scale, 0.5); // _ds_kernel1a() expects (scale/2)
_ds_kernel1a<0> (out_data, out_mask, in_data, offset0, scale0, count, mean);
_ds_kernel1a<1> (out_data+16, out_mask+16, in_data+32, offset0, scale0, count, mean);
_ds_kernel1a<2> (out_data+32, out_mask+32, in_data+64, offset0, scale0, count, mean);
_ds_kernel1a<3> (out_data+48, out_mask+48, in_data+96, offset0, scale0, count, mean);
incremental_upsample8 offset1(in_offset+8);
incremental_upsample8 scale1(in_scale+8, 0.5); // _ds_kernel1a() expects (scale/2)
_ds_kernel1a<4> (out_data+64, out_mask+64, in_data+128, offset1, scale1, count, mean);
_ds_kernel1a<5> (out_data+80, out_mask+80, in_data+160, offset1, scale1, count, mean);
_ds_kernel1a<6> (out_data+96, out_mask+96, in_data+192, offset1, scale1, count, mean);
_ds_kernel1a<7> (out_data+112, out_mask+112, in_data+224, offset1, scale1, count, mean);
count.update(update_count);
mean.update(update_mean);
}
// Fast decode kernel.
// Assumes nt (=nt_per_assembled_chunk) is a multiple of 256.
// Assumes nt_per_packet = 16.
//
// Reads (nupfreq, nt) input data values (uint8).
// Reads (nt/16) offset values (float32).
// Reads (nt/16) scale values (float32).
// Writes (nupfreq, nt/2) output data values (float32).
// Writes (nupfreq, nt/2) output mask values (int32).
// Writes (nt/32) count values (float32).
// Writes (nt/32) mean values (float32).
//
// Note that values of the 'out_data' array are undefined (but guaranteed to be non-NaN)
// if the corresponding 'out_mask' entry is zero.
inline void _ds_kernel1(float *out_data, int *out_mask, const uint8_t *in_data, const float *in_offsets,
const float *in_scales, float *out_count, float *out_mean, int nupfreq, int nt)
{
// The first pass computes out_count = sum(w_i), but
// uses out_mean as a temp buffer to store sum(w_i d_i).
memset(out_count, 0, (nt/32) * sizeof(float));
memset(out_mean, 0, (nt/32) * sizeof(float));
for (int iupfreq = 0; iupfreq < nupfreq; iupfreq++) {
for (int i = 0; i < (nt/256); i++)
_ds_kernel1b(out_data + iupfreq*(nt/2) + 128*i,
out_mask + iupfreq*(nt/2) + 128*i,
in_data + iupfreq*nt + 256*i,
in_offsets + 16*i,
in_scales + 16*i,
out_count + 8*i,
out_mean + 8*i);
}
// The second pass computes out_mean = sum(w_i d_i) / sum(w_i).
__m256 one = _mm256_set1_ps(1.0);
for (int i = 0; i < (nt/32); i += 8) {
__m256 num = _mm256_load_ps(out_mean + i);
__m256 den = _mm256_load_ps(out_count + i);
__m256 mean = num / _mm256_max_ps(den, one);
_mm256_store_ps(out_mean + i, mean);
}
}
// Reads 16 data values (float32)
// Reads 16 mask values (int32)
// Calls in_mean::get<N>() to get the mean.
// Calls out_var::add<N>() with sum w d^2
template<int N>
inline void _ds_kernel2a(const float *data, const int *mask, incremental_upsample8 &in_mean, incremental_downsample8 &out_var)
{
__m256 x0 = _mm256_load_ps(data);
__m256 x1 = _mm256_load_ps(data+8);
// Subtract offset.
__m256 offset = in_mean.get<N>();
x0 -= offset;
x1 -= offset;
// Apply mask
const float *fmask = (const float *) (mask);
x0 = _mm256_and_ps(x0, _mm256_load_ps(fmask));
x1 = _mm256_and_ps(x1, _mm256_load_ps(fmask+8));
out_var.add<N> (x0*x0 + x1*x1);
}
// Reads 128 data values (float32)
// Reads 128 mask values (int32)
// Reads 8 mean values (float32)
// Updates (not writes!) 8 var values.
inline void _ds_kernel2b(const float *in_data, const int *in_mask, const float *in_mean, float *update_var)
{
incremental_upsample8 mean(in_mean);
incremental_downsample8 var;
_ds_kernel2a<0> (in_data, in_mask, mean, var);
_ds_kernel2a<1> (in_data+16, in_mask+16, mean, var);
_ds_kernel2a<2> (in_data+32, in_mask+32, mean, var);
_ds_kernel2a<3> (in_data+48, in_mask+48, mean, var);
_ds_kernel2a<4> (in_data+64, in_mask+64, mean, var);
_ds_kernel2a<5> (in_data+80, in_mask+80, mean, var);
_ds_kernel2a<6> (in_data+96, in_mask+96, mean, var);
_ds_kernel2a<7> (in_data+112, in_mask+112, mean, var);
var.update(update_var);
}
// kernel2: computes offsets, scales
//
// The 'in_data' and 'in_mask' arrays have shape (nupfreq,nt/2). (Not shape (nupfreq,nt)!)
//
// The w0,w1,w2 arrays have length (nt/32).
//
// - On input:
// w0 = count
// w1 = mean
//
// - On output:
// w0 = offset
// w1 = dec_scale
// w2 = enc_scale
//
// Assumes nt is divisible by 256, and nt_per_packet=16.
//
// Reminder: packets are decoded and encoded as follows
// (decoded intensity) = (dec_scale) * (8-bit value) + offset
// (encoded 8-bit value) = (enc_scale) * (intensity - offset)
inline void _ds_kernel2(const float *in_data, const int *in_mask, float *w0, float *w1, float *w2, int nupfreq, int nt)
{
memset(w2, 0, (nt/32) * sizeof(float));
for (int iupfreq = 0; iupfreq < nupfreq; iupfreq++) {
for (int i = 0; i < (nt/256); i++)
_ds_kernel2b(in_data + iupfreq*(nt/2) + 128*i,
in_mask + iupfreq*(nt/2) + 128*i,
w1 + 8*i,
w2 + 8*i);
}
__m256 c1 = _mm256_set1_ps(1.0);
__m256 c004 = _mm256_set1_ps(0.04);
__m256 c128 = _mm256_set1_ps(128.0);
__m256 eps = _mm256_set1_ps(1.0e-10);
for (int i = 0; i < nt/32; i += 8) {
__m256 count = _mm256_load_ps(w0+i);
__m256 mean = _mm256_load_ps(w1+i);
__m256 var = _mm256_load_ps(w2+i) / _mm256_max_ps(count,c1);
var += eps * mean * mean;
__m256 rms = _mm256_sqrt_ps(var);
__m256 mask = _mm256_cmp_ps(rms, _mm256_setzero_ps(), _CMP_GT_OQ);
rms = _mm256_blendv_ps(c1, rms, mask);
__m256 dec_scale = c004 * rms;
__m256 enc_scale = c1 / dec_scale;
__m256 offset = mean - c128 * dec_scale;
_mm256_store_ps(w0+i, offset);
_mm256_store_ps(w1+i, dec_scale);
_mm256_store_ps(w2+i, enc_scale);
}
}
// Encode kernel.
// Reads 32 data values (float32)
// Reads 32 mask values (float32)
// Calls enc_off::get<2N>() and enc_off::get<2N+1> to get encode offsets.
// Calls enc_scal::get<2N>() and enc_scal::get<2N+1> to get encode scale.
// Writes 32 output values (uint8)
template<int N>
inline void _ds_kernel3a(uint8_t *out, const float *data, const int *mask, incremental_upsample8 &enc_off, incremental_upsample8 &enc_scal, _extract_32_8 &ex)
{
__m256 x0 = _mm256_load_ps(data);
__m256 x1 = _mm256_load_ps(data+8);
__m256 x2 = _mm256_load_ps(data+16);
__m256 x3 = _mm256_load_ps(data+24);
__m256 off = enc_off.get<2*N>();
__m256 scal = enc_scal.get<2*N>();
x0 = (x0 - off) * scal;
x1 = (x1 - off) * scal;
off = enc_off.get<2*N+1>();
scal = enc_scal.get<2*N+1>();
x2 = (x2 - off) * scal;
x3 = (x3 - off) * scal;
const float *fmask = (const float *) mask;
x0 = _mm256_and_ps(x0, _mm256_load_ps(fmask));
x1 = _mm256_and_ps(x1, _mm256_load_ps(fmask+8));
x2 = _mm256_and_ps(x2, _mm256_load_ps(fmask+16));
x3 = _mm256_and_ps(x3, _mm256_load_ps(fmask+24));
__m256i y = ex.extract(x0, x1, x2, x3);
_mm256_store_si256((__m256i *) out, y);
}
// Encode kernel.
// Reads 128 data values (float32)
// Reads 128 mask values (float32)
// Reads 8 offset values from 'w1' (float32)
// Reads 8 inverse_scale values from 'w2' (float32)
// Writes 128 output values (int8)
inline void _ds_kernel3b(uint8_t *out, const float *data, const int *mask, const float *enc_off, const float *enc_scal, _extract_32_8 &ex)
{
incremental_upsample8 w1(enc_off);
incremental_upsample8 w2(enc_scal);
_ds_kernel3a<0> (out, data, mask, w1, w2, ex);
_ds_kernel3a<1> (out+32, data+32, mask+32, w1, w2, ex);
_ds_kernel3a<2> (out+64, data+64, mask+64, w1, w2, ex);
_ds_kernel3a<3> (out+96, data+96, mask+96, w1, w2, ex);
}
// Fast encode kernel.
// Note that the arrays here have (nt/2) time samples, not nt time samples!
// Assumes nt is a multiple of 256, and that 'out' has stride nt (not stride nt/2).
// Assumes nt_per_packet = 16.
//
// Reads (nupfreq,nt/2) data values (float32)
// Reads (nupfreq,nt/2) mask values (int32)
// Reads (nt/32) enc_offset values (float32)
// Reads (nt/32) enc_scale values (float32)
// Writes (nupfreq,nt/2) data values (uint8_t).
inline void _ds_kernel3(uint8_t *out, const float *data, const int *mask, const float *enc_off, const float *enc_scal, int nupfreq, int nt)
{
_extract_32_8 ex;
for (int iupfreq = 0; iupfreq < nupfreq; iupfreq++) {
for (int i = 0; i < (nt/256); i++) {
_ds_kernel3b(out + iupfreq*nt + 128*i,
data + iupfreq*(nt/2) + 128*i,
mask + iupfreq*(nt/2) + 128*i,
enc_off + 8*i,
enc_scal + 8*i,
ex);
}
}
}
// Kernel for downsampling RFI mask.
// Reads 'nbits_in' bits (not bytes!), writes (nbits_in/2) bits.
// Assumes nbits_in is a multiple of 512.
// Note that in the serer, nbits_in will equal nt_per_assembled_chunk.
inline void _ds_kernel_rfimask(uint8_t *dst, const uint8_t *src, int nbits_in)
{
for (int i = 0; i < nbits_in/512; i++) {
__m256i x = _mm256_loadu_si256((const __m256i *) (src + 64*i));
__m256i y = _mm256_loadu_si256((const __m256i *) (src + 64*i + 32));
__m256i t, z;
x = _mm256_and_si256(x, _mm256_srli_epi32(x, 1)); // x &= (x >> 1)
y = _mm256_and_si256(y, _mm256_srli_epi32(y, 1)); // y &= (y >> 1)
t = _mm256_set1_epi8(0x55);
x = _mm256_and_si256(x, t); // x &= t
y = _mm256_and_si256(y, t); // y &= t
x = _mm256_or_si256(x, _mm256_srli_epi32(x, 1)); // x |= (x >> 1)
y = _mm256_or_si256(y, _mm256_srli_epi32(y, 1)); // y |= (y >> 1)
t = _mm256_set1_epi8(0x33);
x = _mm256_and_si256(x, t); // x &= t
y = _mm256_and_si256(y, t); // y &= t
x = _mm256_or_si256(x, _mm256_srli_epi32(x, 2)); // x |= (x >> 2)
y = _mm256_or_si256(y, _mm256_srli_epi32(y, 2)); // y |= (y >> 2)
t = _mm256_set1_epi8(0x0f);
x = _mm256_and_si256(x, t); // x &= t
y = _mm256_and_si256(y, t); // y &= t
x = _mm256_or_si256(x, _mm256_srli_epi32(x, 4)); // x |= (x >> 4)
y = _mm256_or_si256(y, _mm256_srli_epi32(y, 4)); // y |= (y >> 4)
// At this point in the code, if we interpret x,y as uint8[32], then:
// [ x0 - x1 - x2 - ... x15 - ]
// [ y0 - y1 - y2 - ... y15 - ]
// where "-" denotes a junk uint8.
t = _mm256_set_epi8(14, 12, 10, 8, 6, 4, 2, 0,
14, 12, 10, 8, 6, 4, 2, 0,
14, 12, 10, 8, 6, 4, 2, 0,
14, 12, 10, 8, 6, 4, 2, 0);
x = _mm256_shuffle_epi8(x, t);
y = _mm256_shuffle_epi8(y, t);
// At this point in the code, if we interpret x,y as uint64[4], then:
// [ x0 x0 x1 x1 ]
// [ y0 y0 y1 y1 ]
z = _mm256_permute2x128_si256(x, y, 0x21); // [ x1 x1 y0 y0 ]
z = _mm256_blend_epi32(z, x, 0x03); // (00000011)_2 -> [ x0 x1 y0 y0 ]
z = _mm256_blend_epi32(z, y, 0xc0); // (11000000)_2 -> [ x0 x1 y0 y1 ]
_mm256_storeu_si256((__m256i *) (dst + 32*i), z);
}
}
// -------------------------------------------------------------------------------------------------
//
// class fast_assembled_chunk
fast_assembled_chunk::fast_assembled_chunk(const assembled_chunk::initializer &ini_params) :
assembled_chunk(ini_params)
{
if (nt_per_packet != 16)
throw runtime_error("ch_frb_io: fast kernels are only implemented for nt_per_packet=16, you need to either ensure that this is satisfied, or use slow kernels");
if (nupfreq % 2 != 0)
throw runtime_error("ch_frb_io: fast kernels are only implemented for nfreq divisible by 2048, you need to either ensure that this is satisfied, or use slow kernels");
if (constants::nt_per_assembled_chunk % 256 != 0)
throw runtime_error("ch_frb_io: internal error: constants::nt_per_assembled not divisible by 256 (assumed in fast downsampling kernel)");
}
fast_assembled_chunk::~fast_assembled_chunk()
{
this->_deallocate();
}
// virtual override
void fast_assembled_chunk::add_packet(const intensity_packet &packet)
{
// Offset relative to beginning of packet
uint64_t t0 = packet.fpga_count / uint64_t(fpga_counts_per_sample) - isample;
for (int f = 0; f < packet.nfreq_coarse; f++) {
int coarse_freq_id = packet.coarse_freq_ids[f];
int d = coarse_freq_id*nt_coarse + (t0/nt_per_packet);
this->scales[d] = packet.scales[f];
this->offsets[d] = packet.offsets[f];
uint8_t *dst = data + coarse_freq_id * nupfreq * constants::nt_per_assembled_chunk + t0;
const uint8_t *src = packet.data + f * nupfreq * 16;
_add_packet_kernel(dst, src, nupfreq);
}
}
// virtual override
void fast_assembled_chunk::decode(float *intensity, float *weights, int istride, int wstride, float prescale) const
{
if (!intensity || !weights)
throw runtime_error("ch_frb_io: null pointer passed to fast_assembled_chunk::decode()");
if (istride < constants::nt_per_assembled_chunk)
throw runtime_error("ch_frb_io: bad istride passed to fast_assembled_chunk::decode()");
if (wstride < constants::nt_per_assembled_chunk)
throw runtime_error("ch_frb_io: bad wstride passed to fast_assembled_chunk::decode()");
decoder d;
for (int if_coarse = 0; if_coarse < constants::nfreq_coarse_tot; if_coarse++) {
const float *scales_f = this->scales + if_coarse * nt_coarse;
const float *offsets_f = this->offsets + if_coarse * nt_coarse;
for (int if_fine = if_coarse*nupfreq; if_fine < (if_coarse+1)*nupfreq; if_fine++) {
const uint8_t *src_f = this->data + if_fine * constants::nt_per_assembled_chunk;
float *int_f = intensity + if_fine * istride;
float *wt_f = weights + if_fine * wstride;
d.decode_row(int_f, wt_f, src_f, scales_f, offsets_f, prescale);
}
}
}
// Virtual override.
void fast_assembled_chunk::downsample(const assembled_chunk *src1, const assembled_chunk *src2)
{
this->_check_downsample(src1, src2);
int nfreq_c = constants::nfreq_coarse_tot;
int nt_f = constants::nt_per_assembled_chunk;
int nt_c = nt_f / nt_per_packet;
for (int ifreq_c = 0; ifreq_c < nfreq_c; ifreq_c++) {
int ifreq_f = ifreq_c * nupfreq;
float *out_offsets = this->offsets + (ifreq_c * nt_c);
float *out_scales = this->scales + (ifreq_c * nt_c);
_ds_kernel1(ds_data, ds_mask,
src1->data + ifreq_f * nt_f,
src1->offsets + ifreq_c * nt_c,
src1->scales + ifreq_c * nt_c,
out_offsets, out_scales, nupfreq, nt_f);
_ds_kernel2(ds_data, ds_mask, out_offsets, out_scales, ds_w2, nupfreq, nt_f);
_ds_kernel3(this->data + (ifreq_f * nt_f),
ds_data, ds_mask, out_offsets, ds_w2, nupfreq, nt_f);
out_offsets = this->offsets + (ifreq_c * nt_c) + (nt_c/2);
out_scales = this->scales + (ifreq_c * nt_c) + (nt_c/2);
_ds_kernel1(ds_data, ds_mask,
src2->data + ifreq_f * nt_f,
src2->offsets + ifreq_c * nt_c,