-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathassembled_chunk_ringbuf.cpp
742 lines (589 loc) · 28.4 KB
/
assembled_chunk_ringbuf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
#include <iostream>
#include "ch_frb_io_internals.hpp"
#include "chlog.hpp"
using namespace std;
namespace ch_frb_io {
#if 0
}; // pacify emacs c-mode!
#endif
assembled_chunk_ringbuf::assembled_chunk_ringbuf(const intensity_network_stream::initializer &ini_params_, int beam_id_, int stream_id_) :
max_fpga_flushed(0),
max_fpga_retrieved(0),
first_fpgacount(0),
ini_params(ini_params_),
beam_id(beam_id_),
stream_id(stream_id_),
frame0_nano(0),
output_devices(ini_params.output_devices)
{
if ((beam_id < 0) || (beam_id > constants::max_allowed_beam_id))
throw runtime_error("ch_frb_io: bad beam_id passed to assembled_chunk_ringbuf constructor");
if (ini_params.assembled_ringbuf_capacity <= 0)
throw runtime_error("ch_frb_io: assembled_chunk_ringbuf constructor: assembled_ringbuf_capacity must be > 0");
if ((ini_params.nt_align < 0) || (ini_params.nt_align % constants::nt_per_assembled_chunk))
throw runtime_error("ch_frb_io: 'nt_align' must be a multiple of nt_per_assembled_chunk(=" + to_string(constants::nt_per_assembled_chunk) + ")");
for (int n: ini_params.telescoping_ringbuf_capacity) {
if (n < 2)
throw runtime_error("ch_frb_io: assembled_chunk_ringbuf constructor: all telescoping_ringbuf_capacities must be >= 2");
}
#ifndef __AVX2__
if (ini_params.force_fast_kernels)
throw runtime_error("ch_frb_io: the 'force_fast_kernels' flag was set, but this machine does not have the AVX2 instruction set");
#endif
pthread_mutex_init(&this->lock, NULL);
pthread_cond_init(&this->cond_assembled_chunks_added, NULL);
this->num_downsampling_levels = max(ini_params.telescoping_ringbuf_capacity.size(), 1UL);
this->ringbuf_pos.resize(num_downsampling_levels, 0);
this->ringbuf_size.resize(num_downsampling_levels, 0);
this->ringbuf_capacity.resize(num_downsampling_levels, 0);
this->ringbuf.resize(num_downsampling_levels);
// Note that ringbuf_capacity[0] is the sum of 'ini_params.assembled_ringbuf_capacity'
// and 'ini_params.telescoping_ringbuf_capacity[0]'.
this->ringbuf_capacity[0] = ini_params.assembled_ringbuf_capacity;
for (unsigned int i = 0; i < ini_params.telescoping_ringbuf_capacity.size(); i++)
this->ringbuf_capacity[i] += ini_params.telescoping_ringbuf_capacity[i];
for (int ids = 0; ids < num_downsampling_levels; ids++)
this->ringbuf[ids].resize(ringbuf_capacity[ids]);
this->downstream_pos = 0;
this->downstream_bufsize = ini_params.assembled_ringbuf_capacity;
this->_check_invariants();
}
assembled_chunk_ringbuf::~assembled_chunk_ringbuf()
{
pthread_cond_destroy(&this->cond_assembled_chunks_added);
pthread_mutex_destroy(&this->lock);
}
void assembled_chunk_ringbuf::set_frame0(uint64_t f0) {
frame0_nano = f0;
}
void assembled_chunk_ringbuf::print_state()
{
pthread_mutex_lock(&this->lock);
cout << "Beam " << beam_id << "\n";
cout << " downstream: [";
for (int ipos = downstream_pos; ipos < ringbuf_pos[0] + ringbuf_size[0]; ipos++)
cout << " " << this->ringbuf_entry(0,ipos)->ichunk;
cout << " ]\n";
for (int ids = 0; ids < num_downsampling_levels; ids++) {
int i0 = ringbuf_pos[ids];
int i1 = (ids > 0) ? (ringbuf_pos[ids] + ringbuf_size[ids]) : downstream_pos;
cout << " binning " << ids << ": [";
for (int ipos = i0; ipos < i1; ipos++)
cout << " " << this->ringbuf_entry(ids,ipos)->ichunk;
cout << " ]\n";
}
pthread_mutex_unlock(&this->lock);
}
shared_ptr<assembled_chunk>
assembled_chunk_ringbuf::find_assembled_chunk(uint64_t fpga_counts, bool top_level_only)
{
pthread_mutex_lock(&this->lock);
// Return an empty pointer iff stream has ended, and chunk is requested past end-of-stream.
// (If anything else goes wrong, an exception will be thrown.)
if (this->doneflag && (fpga_counts >= this->final_fpga)) {
pthread_mutex_unlock(&this->lock);
return shared_ptr<assembled_chunk> ();
}
// Scan telescoping ring buffer
int start_level = (top_level_only ? 0 : num_downsampling_levels-1);
for (int lev = start_level; lev >= 0; lev--) {
for (int ipos = ringbuf_pos[lev]; ipos < ringbuf_pos[lev] + ringbuf_size[lev]; ipos++) {
auto ch = this->ringbuf_entry(lev, ipos);
if (ch->fpga_begin == fpga_counts) {
pthread_mutex_unlock(&this->lock);
return ch;
}
}
}
pthread_mutex_unlock(&this->lock);
throw runtime_error("ch_frb_io::assembled_chunk::find_assembled_chunk(): couldn't find chunk, maybe your ring buffer is too small?");
}
vector<pair<shared_ptr<assembled_chunk>, uint64_t>>
assembled_chunk_ringbuf::get_ringbuf_snapshot(uint64_t min_fpga_counts, uint64_t max_fpga_counts)
{
// Preallocate vector, before acquiring lock.
vector<pair<shared_ptr<assembled_chunk>, uint64_t>> ret;
ret.reserve(sum(ringbuf_capacity));
pthread_mutex_lock(&this->lock);
// Scan telescoping ring buffer, in a time-ordered way.
for (int ids = num_downsampling_levels-1; ids >= 0; ids--) {
for (int ipos = ringbuf_pos[ids]; ipos < ringbuf_pos[ids] + ringbuf_size[ids]; ipos++) {
auto chunk = this->ringbuf_entry(ids, ipos);
if (min_fpga_counts && (chunk->fpga_end <= min_fpga_counts))
continue; // no overlap
if (max_fpga_counts && (chunk->fpga_begin > max_fpga_counts))
continue; // no overlap
uint64_t where = 1 << (ids+1); // Note: works since l1_ringbuf_level::L1RB_LEVELn == 2^n.
if ((ids == 0) && (ipos >= downstream_pos))
where = l1_ringbuf_level::L1RB_DOWNSTREAM;
ret.push_back({ chunk, where });
}
}
pthread_mutex_unlock(&this->lock);
return ret;
}
// Returns stats about the ring buffer, for the get_statistics RPC.
void assembled_chunk_ringbuf::get_ringbuf_size(uint64_t *ringbuf_fpga_next,
uint64_t *ringbuf_n_ready,
uint64_t *ringbuf_total_capacity,
uint64_t *ringbuf_nelements,
uint64_t *ringbuf_fpga_min,
uint64_t *ringbuf_fpga_max,
int level)
{
pthread_mutex_lock(&this->lock);
if (ringbuf_fpga_next && (level == 0)) {
*ringbuf_fpga_next = 0;
if (downstream_pos < ringbuf_pos[0] + ringbuf_size[0]) {
// Use initial FPGA count of first chunk which has been assembled,
// but not yet processed by "downstream" thread.
*ringbuf_fpga_next = this->ringbuf_entry(0, downstream_pos)->fpga_begin;
}
else if (ringbuf_size[0] > 0) {
// All chunks have been processed by "downstream" thread.
// Use final FPGA count of last chunk in buffer.
*ringbuf_fpga_next = this->ringbuf_entry(0, ringbuf_pos[0] + ringbuf_size[0] - 1)->fpga_end;
}
}
if (ringbuf_n_ready && (level == 0)) {
// Number of chunks which have been assembled, but not yet processed by "downstream" thread.
*ringbuf_n_ready = ringbuf_pos[0] + ringbuf_size[0] - downstream_pos;
}
if (ringbuf_total_capacity) {
if (level == 0) {
*ringbuf_total_capacity = sum(ringbuf_capacity);
} else if (level > num_downsampling_levels) {
*ringbuf_total_capacity = 0;
} else {
*ringbuf_total_capacity = ringbuf_capacity[level-1];
}
}
if (ringbuf_nelements) {
if (level == 0) {
*ringbuf_nelements = sum(ringbuf_size);
} else if (level > num_downsampling_levels) {
*ringbuf_nelements = 0;
} else {
*ringbuf_nelements = ringbuf_size[level-1];
}
}
if (ringbuf_fpga_min) {
*ringbuf_fpga_min = 0;
if (level == 0) {
for (int lev = num_downsampling_levels-1; lev >= 0; lev--) {
if (ringbuf_size[lev] > 0) {
int ipos = ringbuf_pos[lev];
*ringbuf_fpga_min = this->ringbuf_entry(lev,ipos)->fpga_begin;
break;
}
}
} else if (level <= num_downsampling_levels) {
if (ringbuf_size[level-1] > 0) {
int ipos = ringbuf_pos[level-1];
*ringbuf_fpga_min = this->ringbuf_entry(level-1,ipos)->fpga_begin;
}
}
}
if (ringbuf_fpga_max) {
*ringbuf_fpga_max = 0;
if (level == 0) {
for (int ids = 0; ids < num_downsampling_levels; ids++) {
if (ringbuf_size[ids] > 0) {
int ipos = ringbuf_pos[ids] + ringbuf_size[ids] - 1;
*ringbuf_fpga_max = this->ringbuf_entry(ids,ipos)->fpga_end;
break;
}
}
} else if (level <= num_downsampling_levels) {
if (ringbuf_size[level-1] > 0) {
int ipos = ringbuf_pos[level-1];
*ringbuf_fpga_max = this->ringbuf_entry(level-1,ipos)->fpga_end;
}
}
}
pthread_mutex_unlock(&this->lock);
}
void assembled_chunk_ringbuf::stream_to_files(const string &filename_pattern, int priority, bool need_rfi)
{
pthread_mutex_lock(&this->lock);
this->stream_pattern = filename_pattern;
this->stream_priority = priority;
this->stream_rfi_mask = need_rfi;
this->stream_chunks_written = 0;
this->stream_bytes_written = 0;
pthread_mutex_unlock(&this->lock);
}
// In assembled_chunk_ringbuf::put_unassembled_packet(), it's OK to modify 'event_counts'
// without acquiring any locks. This is because the assembler thread passes an event_subcounts
// array which is updated on a per-packet basis, and accumulated into the global event_counts
// on a per-udp_packet_list basis (with locks acquired!).
void assembled_chunk_ringbuf::put_unassembled_packet(const intensity_packet &packet, int64_t *event_counts)
{
uint64_t packet_t0 = packet.fpga_count / packet.fpga_counts_per_sample;
uint64_t packet_ichunk = packet_t0 / constants::nt_per_assembled_chunk;
if (!first_packet_received) {
uint64_t first_ichunk = packet_ichunk;
if (ini_params.nt_align > 0) {
uint64_t chunk_align = ini_params.nt_align / constants::nt_per_assembled_chunk;
first_ichunk = ((first_ichunk + chunk_align - 1) / chunk_align) * chunk_align;
}
this->active_chunk0 = this->_make_assembled_chunk(first_ichunk, 1);
this->active_chunk1 = this->_make_assembled_chunk(first_ichunk+1, 1);
this->first_packet_received = true;
// We initialize 'first_fpgacount' to the FPGA count of the first assembled_chunk.
// (Note that this can be either earlier or later than the FPGA count of the packet.)
// This makes sense because 'first_fpgacount' is used to convert between FPGA counts and
// time sample indices in rf_pipelines/bonsai.
this->first_fpgacount = first_ichunk * constants::nt_per_assembled_chunk * ini_params.fpga_counts_per_sample;
}
// We test these pointers instead of 'doneflag' so that we don't need to acquire the lock in every call.
if (_unlikely(!active_chunk0 || !active_chunk1))
throw runtime_error("ch_frb_io: internal error: assembled_chunk_ringbuf::put_unassembled_packet() called after end_stream()");
if (packet_ichunk >= active_chunk0->ichunk + 2) {
//
// If we receive a packet whose timestamps extend past the range of our current
// assembly buffer, then we advance the buffer and send an assembled_chunk to the
// "downstream" thread.
//
// A design decision here: for a packet which is far in the future, we advance the
// buffer by one assembled_chunk, rather than advancing all the way to the packet
// timestamp. This is to avoid a situation where a single rogue packet timestamped
// in the far future effectively kills the L1 node.
//
this->_put_assembled_chunk(active_chunk0, event_counts);
// After _put_assembled_chunk(), active_chunk0 has been reset to a null pointer.
active_chunk0.swap(active_chunk1);
// Note that we've just swapped active_chunk1 down to active_chunk0, so active_chunk1's ichunk is (active0 + 1).
active_chunk1 = this->_make_assembled_chunk(active_chunk0->ichunk + 1, 1);
}
if (packet_ichunk == active_chunk0->ichunk) {
event_counts[intensity_network_stream::event_type::assembler_hit]++;
active_chunk0->add_packet(packet);
}
else if (packet_ichunk == active_chunk1->ichunk) {
event_counts[intensity_network_stream::event_type::assembler_hit]++;
active_chunk1->add_packet(packet);
}
else {
event_counts[intensity_network_stream::event_type::assembler_miss]++;
if (_unlikely(ini_params.throw_exception_on_assembler_miss))
throw runtime_error("ch_frb_io: assembler miss occurred, and this stream was constructed with the 'throw_exception_on_assembler_miss' flag");
}
}
struct streaming_write_chunk_request : public write_chunk_request {
weak_ptr<assembled_chunk_ringbuf> assembler;
int udelay;
virtual void status_changed(bool finished, bool success,
const std::string &state,
const std::string &error_message) override {
if (udelay) {
usleep(udelay);
}
if (finished && success) {
// "lock" our weak pointer to the assembler; this fails if
// it has been deleted already (in which case we do nothing).
shared_ptr<assembled_chunk_ringbuf> realpointer = assembler.lock();
if (realpointer)
realpointer->chunk_streamed(filename);
else
cout << "Assembled_chunk_ringbuffer: write chunk finished, but assembler has been deleted. No problem!" << endl;
}
}
virtual ~streaming_write_chunk_request() { }
};
void assembled_chunk_ringbuf::chunk_streamed(const std::string &filename) {
//chlog("Assembled_chunk streamed: " << filename);
struct stat st;
int err = stat(filename.c_str(), &st);
if (err < 0) {
chlog("warning: failed to stat file " + filename + " that was just streamed: " + strerror(errno));
return;
}
size_t len = st.st_size;
pthread_mutex_lock(&this->lock);
this->stream_chunks_written ++;
this->stream_bytes_written += len;
pthread_mutex_unlock(&this->lock);
}
void assembled_chunk_ringbuf::get_streamed_chunks(int &achunks, size_t &abytes) {
pthread_mutex_lock(&this->lock);
achunks = stream_chunks_written;
abytes = stream_bytes_written;
pthread_mutex_unlock(&this->lock);
}
// Helper function called assembler thread, to add a new assembled_chunk to the ring buffer.
// Resets 'chunk' to a null pointer.
// Warning: only safe to call from assembler thread.
bool assembled_chunk_ringbuf::_put_assembled_chunk(unique_ptr<assembled_chunk> &chunk, int64_t *event_counts)
{
if (!chunk)
throw runtime_error("ch_frb_io: internal error: empty pointer passed to assembled_chunk_ringbuf::_put_unassembled_packet()");
if (chunk->has_rfi_mask)
throw runtime_error("ch_frb_io: internal error: chunk passed to assembled_chunk_ringbuf::_put_unassembled_packet() has rfi_mask flag set");
// Step 1: prepare all data needed to modify the ring buffer. In this step, we do all of our
// buffer allocation and downsampling, without the lock held. In step 2, we will acquire the
// lock and modify the ring buffer (without expensive operations like allocation/downsampling).
//
// It is very important to note that we can read (but not modify) the ring buffer without
// acquiring the lock! This is because _put_assembled_chunk() is called from the assembler
// thread, and only the assembler thread modifies the ring buffer ("single-producer").
int nds = this->num_downsampling_levels;
// List of chunks to be pushed and popped at each level of the ring buffer (in step 2!)
vector<shared_ptr<assembled_chunk>> pushlist(nds);
vector<shared_ptr<assembled_chunk>> poplist(2*nds);
uint64_t chunk_fpga_end = chunk->fpga_end;
// Converts unique_ptr -> shared_ptr, and resets 'chunk' to a null pointer.
pushlist[0] = shared_ptr<assembled_chunk> (chunk.release());
// Without lock held...
for (int ids = 0; ids < nds; ids++) {
// At top of loop, we want to add the chunk pushlist[ids] at level 'ids' of
// the telescoping ring buffer. Is there space available...?
if (ringbuf_size[ids] < ringbuf_capacity[ids])
break; // ... Yes, no problem.
// ... No space available! Need to pop chunks.
// If we're at the bottom level of the buffer, just pop a single chunk...
if (ids == nds-1) {
poplist[2*ids] = this->ringbuf_entry(ids, ringbuf_pos[ids]);
// This assert and its counterpart below ensure that a chunk never leaves the telescoping
// ring buffer before its RFI mask is filled. (If this could happen, we might hang on to
// the reference forever in output_device::_awaiting_rfi and get a memory leak.)
if ((ini_params.nrfifreq > 0) && !poplist[2*ids]->has_rfi_mask)
throw runtime_error("ch_frb_io: _put_assembled_chunk(): rfimask not initialized as expected, maybe your ring buffer is too small?");
break;
}
// ... Otherwise, pop two chunks, downsample, and push the downsampled chunk
// to the next level of the telescoping ring buffer.
poplist[2*ids] = this->ringbuf_entry(ids, ringbuf_pos[ids]);
poplist[2*ids+1] = this->ringbuf_entry(ids, ringbuf_pos[ids]+1);
if ((ini_params.nrfifreq > 0) && (!poplist[2*ids]->has_rfi_mask || !poplist[2*ids+1]->has_rfi_mask))
throw runtime_error("ch_frb_io: _put_assembled_chunk(): rfimask not initialized as expected, maybe your ring buffer is too small?");
pushlist[ids+1] = _make_assembled_chunk(poplist[2*ids]->ichunk, 1 << (ids+1));
// Note: this test is currently superfluous, since _make_assembled_chunk() throws
// an exception (rather than returning NULL) if the allocation fails. It's
// just a placeholder to remind myself that the return value of this function
// is supposed to indicate success/failure, and that more thought needs to
// be put into assembled_chunk memory management.
if (!pushlist[ids+1])
return false;
pushlist[ids+1]->downsample(poplist[2*ids].get(), poplist[2*ids+1].get());
}
// Step 2: acquire lock and modify the ring buffer. We have already computed the chunks to
// be added/removed at each level (pushlist/poplist), so we don't malloc/free/downsample with
// the lock held.
pthread_mutex_lock(&this->lock);
if (this->doneflag) {
pthread_mutex_unlock(&this->lock);
throw runtime_error("ch_frb_io: internal error: assembled_chunk_ringbuf::put_unassembled_packet() called after end_stream()");
}
for (int ids = 0; ids < nds; ids++) {
// Number of chunks to be removed from level 'ids' of the telescoping ring buffer.
int npop = 0;
if (poplist[2*ids]) npop++;
if (poplist[2*ids+1]) npop++;
// Remove chunks from ring buffer, by resetting shared_ptrs
// Note that we are still holding references to these chunks in poplist[].
// This ensures that assembled_chunk destructors are called without the lock held (at the end of this function).
for (int p = 0; p < npop; p++)
this->ringbuf_entry(ids, ringbuf_pos[ids]+p) = shared_ptr<assembled_chunk> ();
ringbuf_pos[ids] += npop;
ringbuf_size[ids] -= npop;
// Add chunk to level 'ids' of the telescoping ring buffer.
if (pushlist[ids]) {
this->ringbuf_entry(ids, ringbuf_pos[ids] + ringbuf_size[ids]) = pushlist[ids];
ringbuf_size[ids]++;
}
}
// Last step while holding lock: handle case where downstream thread is running
// slow, and chunks were dropped.
int num_assembled_chunks_dropped = 0;
int max_allowed_downstream_pos = ringbuf_pos[0] + ringbuf_size[0] - downstream_bufsize;
if (downstream_pos < max_allowed_downstream_pos) {
num_assembled_chunks_dropped = max_allowed_downstream_pos - downstream_pos;
downstream_pos = max_allowed_downstream_pos;
}
// Make thread-local copies with lock held.
string loc_stream_pattern = this->stream_pattern;
int loc_stream_priority = this->stream_priority;
bool loc_stream_rfi_mask = this->stream_rfi_mask;
pthread_cond_broadcast(&this->cond_assembled_chunks_added);
pthread_mutex_unlock(&this->lock);
// Stream new chunk to disk (if 'stream_pattern' is a nonempty string).
// It's better to do this processing without the lock held, we just need to use
// 'loc_stream_pattern' and 'loc_stream_priority' here, for thread-safety.
if (loc_stream_pattern.size() > 0) {
shared_ptr<streaming_write_chunk_request> wreq = make_shared<streaming_write_chunk_request> ();
wreq->filename = pushlist[0]->format_filename(loc_stream_pattern);
wreq->priority = loc_stream_priority;
wreq->need_rfi_mask = loc_stream_rfi_mask;
// DEBUG
if (wreq->priority == -1000)
wreq->udelay = 1000000;
wreq->chunk = pushlist[0];
wreq->assembler = shared_from_this();
// return value from enqueue_write_request() is ignored.
output_devices.enqueue_write_request(wreq);
}
// This call to _check_invariants() is a good test during debugging, but
// shouldn't be enabled in production.
//
// FIXME!! Make sure this line gets commented out eventually.
this->_check_invariants();
// For even more debugging, uncomment this line!
// this->print_state();
if (event_counts) {
event_counts[intensity_network_stream::event_type::assembled_chunk_queued]++;
event_counts[intensity_network_stream::event_type::assembled_chunk_dropped] += num_assembled_chunks_dropped;
}
assert(chunk_fpga_end > this->max_fpga_flushed);
this->max_fpga_flushed = chunk_fpga_end;
if (ini_params.emit_warning_on_buffer_drop && (num_assembled_chunks_dropped > 0))
cout << "ch_frb_io: warning: processing thread is running too slow, dropping assembled_chunk" << endl;
if (ini_params.throw_exception_on_buffer_drop && (num_assembled_chunks_dropped > 0))
throw runtime_error("ch_frb_io: assembled_chunk was dropped and stream was constructed with 'throw_exception_on_buffer_drop' flag");
// Note: when this function returns, stray references in poplist[*][*] are dropped, and assembled_chunk destructors get called.
return true;
}
void assembled_chunk_ringbuf::_check_invariants()
{
// It's OK to access the ringbuf_* fields read-only without acquiring the lock,
// since _check_invariants() is only called from the assembler thread.
//
// Some checks in this function are redundant with checks elsewhere, but that's OK!
ch_assert(num_downsampling_levels > 0);
ch_assert(ringbuf_pos.size() == (unsigned) num_downsampling_levels);
ch_assert(ringbuf_size.size() == (unsigned) num_downsampling_levels);
ch_assert(ringbuf_capacity.size() == (unsigned) num_downsampling_levels);
ch_assert(ringbuf.size() == (unsigned) num_downsampling_levels);
for (int ids = 0; ids < num_downsampling_levels; ids++) {
ch_assert(ringbuf_pos[ids] >= 0);
ch_assert(ringbuf_size[ids] >= 0);
ch_assert(ringbuf_capacity[ids] >= 2);
ch_assert(ringbuf_size[ids] <= ringbuf_capacity[ids]);
ch_assert(ringbuf[ids].size() == (unsigned) ringbuf_capacity[ids]);
for (int ipos = ringbuf_pos[ids]; ipos < ringbuf_pos[ids] + ringbuf_capacity[ids]; ipos++) {
shared_ptr<assembled_chunk> chunk = this->ringbuf_entry(ids, ipos);
// These entries of the ring buffer should be empty.
if (ipos >= ringbuf_pos[ids] + ringbuf_size[ids]) {
ch_assert(!chunk);
continue;
}
// Nonempty entries...
ch_assert(chunk);
ch_assert(chunk->beam_id == this->beam_id);
ch_assert(chunk->nupfreq == this->ini_params.nupfreq);
ch_assert(chunk->nt_per_packet == this->ini_params.nt_per_packet);
ch_assert(chunk->fpga_counts_per_sample == this->ini_params.fpga_counts_per_sample);
ch_assert(chunk->binning == (1 << ids));
ch_assert(chunk->isample == chunk->ichunk * constants::nt_per_assembled_chunk);
if ((ini_params.nrfifreq > 0) && (ids > 0))
ch_assert(chunk->has_rfi_mask);
// Now check logical contiguousness of the telescoping ring buffer, by
// checking that 'chunk' is contiguous with the next chunk in the buffer.
shared_ptr<assembled_chunk> next;
if (ipos < ringbuf_pos[ids] + ringbuf_size[ids] - 1) {
// Next chunk is in same level of telescoping ring buffer.
next = this->ringbuf_entry(ids, ipos+1);
}
else if (ids > 0) {
// Next chunk is in a different level of the telescoping ring buffer.
ch_assert(ringbuf_size[ids-1] > 0);
next = this->ringbuf_entry(ids-1, ringbuf_pos[ids-1]);
}
else
continue; // Last chunk in buffer, there is no 'next'
ch_assert(next);
ch_assert(next->ichunk == chunk->ichunk + chunk->binning);
}
}
// We do need to acquire the lock to access 'downstream_pos', since it's modified
// by the downstream thread.
pthread_mutex_lock(&lock);
int dpos = this->downstream_pos;
pthread_mutex_unlock(&lock);
ch_assert(downstream_bufsize > 0);
ch_assert(downstream_bufsize <= ringbuf_capacity[0]);
ch_assert(dpos >= ringbuf_pos[0]);
ch_assert(dpos <= ringbuf_pos[0] + ringbuf_size[0]);
ch_assert(dpos >= ringbuf_pos[0] + ringbuf_size[0] - downstream_bufsize);
}
bool assembled_chunk_ringbuf::inject_assembled_chunk(assembled_chunk* chunk)
{
uint64_t ich = chunk->ichunk;
unique_ptr<assembled_chunk> uch(chunk);
bool worked = _put_assembled_chunk(uch, NULL);
// Danger: monkey with the active_chunk0, active_chunk1 variables,
// which are not lock-protected and only supposed to be accessed
// by the assembler thread.
active_chunk0 = this->_make_assembled_chunk(ich + 1, 1);
active_chunk1 = this->_make_assembled_chunk(ich + 2, 1);
return worked;
}
shared_ptr<assembled_chunk> assembled_chunk_ringbuf::get_assembled_chunk(bool wait)
{
shared_ptr<assembled_chunk> chunk;
pthread_mutex_lock(&this->lock);
for (;;) {
if (downstream_pos < ringbuf_pos[0] + ringbuf_size[0]) {
chunk = this->ringbuf_entry(0, downstream_pos);
downstream_pos++;
break;
}
if (!wait)
break;
if (this->doneflag)
break; // Ring buffer is empty and end_stream() has been called
// Wait for chunks to be added to the ring buffer.
pthread_cond_wait(&this->cond_assembled_chunks_added, &this->lock);
}
pthread_mutex_unlock(&this->lock);
if (chunk) {
assert(chunk->fpga_end > this->max_fpga_retrieved);
this->max_fpga_retrieved = chunk->fpga_end;
}
return chunk;
}
// Called by the assembler thread, when it exits.
void assembled_chunk_ringbuf::end_stream(int64_t *event_counts)
{
if (!active_chunk0 || !active_chunk1)
throw runtime_error("ch_frb_io: internal error: empty pointers in assembled_chunk_ringbuf::end_stream(), this can happen if end_stream() is called twice");
// Local variable (will shortly assign to this->final_fpga, after acquiring lock).
uint64_t loc_final_fpga = (active_chunk0->ichunk + 2) * uint64_t(constants::nt_per_assembled_chunk * active_chunk0->fpga_counts_per_sample);
// After these calls, 'active_chunk0' and 'active_chunk1' will be reset to null pointers.
this->_put_assembled_chunk(active_chunk0, event_counts);
this->_put_assembled_chunk(active_chunk1, event_counts);
pthread_mutex_lock(&this->lock);
if (doneflag) {
pthread_mutex_unlock(&this->lock);
throw runtime_error("ch_frb_io: internal error: doneflag already set in assembled_chunk_ringbuf::end_stream()");
}
// Wake up processing thread, if it is waiting for data
pthread_cond_broadcast(&this->cond_assembled_chunks_added);
// With lock held
this->doneflag = true;
this->final_fpga = loc_final_fpga;
pthread_mutex_unlock(&this->lock);
}
std::unique_ptr<assembled_chunk> assembled_chunk_ringbuf::_make_assembled_chunk(uint64_t ichunk, int binning, bool zero)
{
struct assembled_chunk::initializer chunk_params;
chunk_params.beam_id = this->beam_id;
chunk_params.nupfreq = this->ini_params.nupfreq;
chunk_params.nrfifreq = this->ini_params.nrfifreq;
chunk_params.nt_per_packet = this->ini_params.nt_per_packet;
chunk_params.fpga_counts_per_sample = this->ini_params.fpga_counts_per_sample;
chunk_params.frame0_nano = this->frame0_nano;
chunk_params.force_reference = this->ini_params.force_reference_kernels;
chunk_params.force_fast = this->ini_params.force_fast_kernels;
chunk_params.stream_id = this->stream_id;
chunk_params.binning = binning;
chunk_params.ichunk = ichunk;
if (ini_params.memory_pool) {
chunk_params.pool = ini_params.memory_pool;
chunk_params.slab = ini_params.memory_pool->get_slab(zero);
if (!chunk_params.slab)
throw runtime_error("**** Too much memory pressure for this poor L1 node to survive! Blowing up now... ****");
}
return assembled_chunk::make(chunk_params);
}
} // namespace ch_frb_io