-
Notifications
You must be signed in to change notification settings - Fork 18
/
eval.py
199 lines (162 loc) · 6.21 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
from torchvision import transforms
import os
import random
import numpy as np
from collections import defaultdict
from data.market1501 import Market1501
from data.duke import DukeMTMC_reID
from model import resnet_model
from utils import get_id, flip_img, compute_map
def eval(gid, dataset, dataset_root, which, exp_dir):
mAP, CMC = main(gid=gid, dataset=dataset, dataset_root=dataset_root, which=which, exp_dir=exp_dir, verbose=False)
return mAP, CMC
def main(gid=None, dataset=None, dataset_root=None, which=None, exp_dir=None, verbose=False):
"""
Configs
"""
GPU_ID = 0 # gpu id or 'None'
BATCH_SIZE = 32 # batch size when extracting query and gallery features
IMG_SIZE = (256, 128)
DATASET = 'market1501' # market1501, duke
WHICH = 'last' # which model to load
EXP_DIR = './exp/dmml/market1501'
NORMALIZE_FEATURE = True # whether to normalize features in evaluation
NUM_WORKERS = 8
if gid is not None:
GPU_ID = gid
if dataset is not None:
DATASET = dataset
if which is not None:
WHICH = which
if exp_dir is not None:
EXP_DIR = exp_dir
"""
Datasets
"""
if dataset_root is None:
# change dataset directories here to your own if needed
if DATASET == 'market1501':
dataset_root = '<DATASET_ROOT_MARKET>'
elif DATASET == 'duke':
dataset_root = '<DATASET_ROOT_DUKE>'
else:
raise NotImplementedError
print('Generating dataset...')
eval_transform = transforms.Compose([transforms.Resize(IMG_SIZE, interpolation=3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
if DATASET == 'market1501':
datasets = {x: Market1501(dataset_root, transform=eval_transform, split=x)
for x in ['gallery', 'query']}
num_classes = 751
elif DATASET == 'duke':
datasets = {x: DukeMTMC_reID(dataset_root, transform=eval_transform, split=x)
for x in ['gallery', 'query']}
num_classes = 702
dataloaders = {x: torch.utils.data.DataLoader(datasets[x], batch_size=BATCH_SIZE,
shuffle=False, num_workers=NUM_WORKERS) for x in ['gallery', 'query']}
print('Done.')
"""
Model
"""
print('Restoring model...')
### You may need to modify the arguments of the model according to your training settings.
model = resnet_model(remove_downsample=True)
# model = resnet_model(num_classes=num_classes, include_top=False, remove_downsample=False)
model.load_state_dict(torch.load('{}/model_{}.pth'.format(EXP_DIR, WHICH)))
if GPU_ID is not None:
model.cuda(GPU_ID)
model.eval()
print('Done.')
"""
Test
"""
print('Getting image ID...')
gallery_cam, gallery_label = get_id(datasets['gallery'].imgs, dataset=DATASET)
query_cam, query_label = get_id(datasets['query'].imgs, dataset=DATASET)
print('Done.')
# Extract feature
print('Extracting gallery feature...')
gallery_feature, g_images = extract_feature(model, dataloaders['gallery'],
normalize_feature=NORMALIZE_FEATURE, gid=GPU_ID, verbose=verbose)
print('Done.')
print('Extracting query feature...')
query_feature, q_images = extract_feature(model, dataloaders['query'],
normalize_feature=NORMALIZE_FEATURE, gid=GPU_ID, verbose=verbose)
print('Done.')
query_cam = np.array(query_cam)
query_label = np.array(query_label)
gallery_cam = np.array(gallery_cam)
gallery_label = np.array(gallery_label)
# Evaluate
print('Evaluating...')
CMC = torch.IntTensor(len(gallery_label)).zero_()
ap = 0.0
for i in range(len(query_label)):
ap_tmp, CMC_tmp = evaluate(query_feature[i], query_label[i], query_cam[i],
gallery_feature, gallery_label, gallery_cam)
if CMC_tmp[0] == -1:
continue
CMC = CMC + CMC_tmp
ap += ap_tmp
CMC = CMC.float()
CMC = CMC / len(query_label) # average CMC
print('Done.')
print('Rank-1: {:.6f} Rank-5: {:.6f} Rank-10: {:.6f} mAP: {:.6f}'.format(
CMC[0].item(), CMC[4].item(), CMC[9].item(), ap/len(query_label)))
return ap / len(query_label), CMC
def extract_feature(model, dataloaders, normalize_feature=True, gid=None, verbose=False):
"""
Extract query and gallery features.
"""
features = torch.FloatTensor()
count = 0
images_numpy = None
for (image, label) in dataloaders:
n, c, h, w = image.size()
count += n
if count % (10 * n) == 0 and verbose:
print(count)
ff = torch.FloatTensor(n, 2048).zero_()
for i in range(2):
if i == 1:
image = flip_img(image.cpu())
if gid is not None:
image = image.cuda(gid)
feat = model(image)
f = feat.data.cpu()
ff = ff + f
# normalize feature
if normalize_feature:
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
ff = ff.div(fnorm.expand_as(ff))
features = torch.cat((features, ff), 0)
img_numpy = image.cpu().numpy()
if images_numpy is not None:
images_numpy = np.append(images_numpy, img_numpy, axis=0)
else:
images_numpy = img_numpy
print('total: {:d}'.format(count))
return features, images_numpy
def evaluate(qf, ql, qc, gf, gl, gc):
"""
Evaluation
"""
query = qf.view(-1, 1)
score = torch.mm(gf, query)
score = score.squeeze(1).cpu()
score = score.numpy()
# prediction index
index = np.argsort(score)
index = index[::-1]
query_index = np.argwhere(gl==ql)
camera_index = np.argwhere(gc==qc)
good_index = np.setdiff1d(query_index, camera_index, assume_unique=True)
junk_index1 = np.argwhere(gl==-1)
junk_index2 = np.intersect1d(query_index, camera_index)
junk_index = np.append(junk_index2, junk_index1) #.flatten())
ap_tmp, CMC_tmp = compute_map(index, good_index, junk_index)
return ap_tmp, CMC_tmp
if __name__ == '__main__':
main()