-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
472 lines (410 loc) · 17.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
from torch.utils.data import sampler
import torchvision.datasets as dset
import numpy as np
import torch
from torch import nn
import torchvision.transforms as transforms
from loss import *
from tqdm import tqdm
import os
import torchvision.transforms.functional as tvf
import random
import torch.nn.functional as F
def rgb_to_hsv(input, device):
input = input.transpose(1, 3)
sh = input.shape
input = input.reshape(-1, 3)
mx, inmx = torch.max(input, dim=1)
mn, inmc = torch.min(input, dim=1)
df = mx - mn
h = torch.zeros(input.shape[0], 1).to(device)
# if False: #'xla' not in device.type:
# h.to(device)
ii = [0, 1, 2]
iid = [[1, 2], [2, 0], [0, 1]]
shift = [360, 120, 240]
for i, id, s in zip(ii, iid, shift):
logi = (df != 0) & (inmx == i)
h[logi, 0] = \
torch.remainder((60 * (input[logi, id[0]] - input[logi, id[1]]) / df[logi] + s), 360)
s = torch.zeros(input.shape[0], 1).to(device) #
# if False: #'xla' not in device.type:
# s.to(device)
s[mx != 0, 0] = (df[mx != 0] / mx[mx != 0]) * 100
v = mx.reshape(input.shape[0], 1) * 100
output = torch.cat((h / 360., s / 100., v / 100.), dim=1)
output = output.reshape(sh).transpose(1, 3)
return output
def hsv_to_rgb(input, device):
input = input.transpose(1, 3)
sh = input.shape
input = input.reshape(-1, 3)
hh = input[:, 0]
hh = hh * 6
ihh = torch.floor(hh).type(torch.int32)
ff = (hh - ihh)[:, None];
v = input[:, 2][:, None]
s = input[:, 1][:, None]
p = v * (1.0 - s)
q = v * (1.0 - (s * ff))
t = v * (1.0 - (s * (1.0 - ff)));
output = torch.zeros_like(input).to(device) #.to(device)
# if False: #'xla' not in device.type:
# output.to(device)
output[ihh == 0, :] = torch.cat((v[ihh == 0], t[ihh == 0], p[ihh == 0]), dim=1)
output[ihh == 1, :] = torch.cat((q[ihh == 1], v[ihh == 1], p[ihh == 1]), dim=1)
output[ihh == 2, :] = torch.cat((p[ihh == 2], v[ihh == 2], t[ihh == 2]), dim=1)
output[ihh == 3, :] = torch.cat((p[ihh == 3], q[ihh == 3], v[ihh == 3]), dim=1)
output[ihh == 4, :] = torch.cat((t[ihh == 4], p[ihh == 4], v[ihh == 4]), dim=1)
output[ihh == 5, :] = torch.cat((v[ihh == 5], p[ihh == 5], q[ihh == 5]), dim=1)
output = output.reshape(sh)
output = output.transpose(1, 3)
return output
def deform_data(x_in, perturb, trans, s_factor, h_factor, embedd, device):
h=x_in.shape[2]
w=x_in.shape[3]
nn=x_in.shape[0]
v=((torch.rand(nn, 6) - .5) * perturb).to(device)
rr = torch.zeros(nn, 6).to(device)
if not embedd:
ii = torch.randperm(nn)
u = torch.zeros(nn, 6).to(device)
u[ii[0:nn//2]]=v[ii[0:nn//2]]
else:
u=v
# Ammplify the shift part of the
u[:,[2,5]]*=2
rr[:, [0,4]] = 1
if trans=='shift':
u[:,[0,1,3,4]]=0
elif trans=='scale':
u[:,[1,3]]=0
elif 'rotate' in trans:
u[:,[0,1,3,4]]*=1.5
ang=u[:,0]
v=torch.zeros(nn,6)
v[:,0]=torch.cos(ang)
v[:,1]=-torch.sin(ang)
v[:,4]=torch.cos(ang)
v[:,3]=torch.sin(ang)
s=torch.ones(nn)
if 'scale' in trans:
s = torch.exp(u[:, 1])
u[:,[0,1,3,4]]=v[:,[0,1,3,4]]*s.reshape(-1,1).expand(nn,4)
rr[:,[0,4]]=0
theta = (u+rr).view(-1, 2, 3)
grid = F.affine_grid(theta, [nn,1,h,w],align_corners=True)
x_out=F.grid_sample(x_in,grid,padding_mode='zeros',align_corners=True)
if x_in.shape[1]==3 and s_factor>0:
v=torch.rand(nn,2).to(device)
vv=torch.pow(2,(v[:,0]*s_factor-s_factor/2)).reshape(nn,1,1)
uu=((v[:,1]-.5)*h_factor).reshape(nn,1,1)
x_out_hsv=rgb_to_hsv(x_out, device)
x_out_hsv[:,1,:,:]=torch.clamp(x_out_hsv[:,1,:,:]*vv,0.,1.)
x_out_hsv[:,0,:,:]=torch.remainder(x_out_hsv[:,0,:,:]+uu,1.)
x_out=hsv_to_rgb(x_out_hsv, device)
ii=torch.where(torch.bernoulli(torch.ones(nn)*.5)==1)
for i in ii:
x_out[i]=x_out[i].flip(3)
return x_out
def deform_gaze(x):
n = x.shape[2]
x1 = torch.cat((x[:,:,:n//2,:n//2], x[:,:,:n//2,n//2:]), dim=0)
x2 = torch.cat((x[:,:,n//2:,:n//2], x[:,:,n//2:,n//2:]), dim=0)
return x1, x2
def deform_gaze2(x, pars):
bsz = x.size(0)
patch_size = pars.patch_size
x_unfold = F.unfold(x, kernel_size=patch_size, stride=patch_size//2) # (bsz, 256, 49)
all_patches = x_unfold.permute(0,2,1).reshape(bsz*x_unfold.shape[-1], patch_size, patch_size) # (bsz*49, 16, 16)
output = all_patches.unsqueeze(dim=1) # bsz*49, 1, 16, 16
return output
def random_rotate(image):
if random.random() > 0.5:
return tvf.rotate(image, angle=random.choice((0, 90, 180, 270)))
return image
def get_scripted_transforms(s=1.0):
tf = torch.nn.Sequential(
transforms.RandomResizedCrop(64),
transforms.RandomHorizontalFlip(p=0.5),
# transforms.RandomRotation(90),
transforms.RandomApply(torch.nn.ModuleList([
transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.2)
]),p=0.8)
)
scripted_transforms = torch.jit.script(tf)
return scripted_transforms
def train_model(train_loader, test_loader, fix, model, pars, ep_loss, ep_acc, expdir, current_layer=-1):
"""
The training function
"""
device = pars.device
dtype = torch.float32
fix = fix.to(device=device)
model = model.to(device=device) # move the model parameters to CPU/GPU
print(fix)
print(model)
if pars.train_unsupervised:
lr = pars.LR
opt = pars.OPT
# select self-supervised losses
if pars.loss == 'Hinge':
criterion = ContrastiveHinge(pars.batch_size, pars.thr1, pars.thr2, device=pars.device)
elif pars.loss == 'HingeNN':
criterion = ContrastiveHingeNN(pars.batch_size, pars.thr1, pars.thr2, pars.grad_block, device=pars.device)
elif pars.loss == 'HingeNN2':
criterion = ContrastiveHingeNN2(pars.batch_size, pars.thr1, pars.thr2, pars.grad_block, device=pars.device)
elif pars.loss == 'HingeNNFewerNegs':
criterion = HingeNNFewerNegs(pars.batch_size, pars.thr1, pars.thr2, pars.n_negs, pars.grad_block, device=pars.device)
elif pars.loss == 'GazeHingeNN':
criterion = GazeHingeNN(pars)
elif pars.loss =='CLAPP':
n_features = model[0].weight.shape[0] if pars.process != 'E2E' else 1024
criterion = CLAPPHinge(pars, n_features)
else:
criterion = SimCLRLoss(pars.batch_size, pars.device)
if pars.process == 'E2E':
if pars.loss == 'CLAPP':
params = list(fix.parameters())+list(model.parameters())+list(criterion.parameters())
else:
params = list(fix.parameters())+list(model.parameters())
else:
if pars.loss == 'CLAPP':
params = list(model.parameters())+list(criterion.parameters())
else:
params = model.parameters()
else:
if pars.unsupervised:
lr = pars.clf_lr
loss = pars.clf_loss
opt = pars.clf_opt
params = model.parameters()
else:
lr = pars.LR
loss = pars.loss
opt = pars.OPT
if pars.process == 'E2E':
params = list(fix.parameters())+list(model.parameters())
else:
params = model.parameters()
criterion = torch.nn.CrossEntropyLoss()
print(criterion)
if opt == 'SGD':
optimizer = torch.optim.SGD(params, lr=lr)
else:
optimizer = torch.optim.Adam(params, lr=lr)
if pars.loadnet and pars.train_unsupervised:
checkpoint = torch.load(pars.loadnet)
optimizer.load_state_dict(checkpoint['optimizer'])
print(optimizer)
start_epoch = 0
if (pars.unsupervised) and (not pars.train_unsupervised):
n_epochs = pars.clf_epochs
else:
n_epochs = pars.epochs
if pars.loadnet:
checkpoint = torch.load(pars.loadnet)
start_epoch = checkpoint['epoch']
for e in range(start_epoch, n_epochs):
running_loss = 0
bsz_multiplier = 49 if pars.gaze_shift else 2
num_train = min(pars.num_train, len(train_loader.dataset))
total_n = bsz_multiplier * num_train if pars.train_unsupervised else num_train
with tqdm(total=total_n) as progress_bar:
for batch_idx, (data, targ) in enumerate(train_loader):
model.train() # put model to training mode
# using new data deformation with random resized crop
if not pars.gaze_shift:
if pars.distort == 0 and pars.train_unsupervised:
x = [d.to(device, dtype=dtype) for d in data]
else:
x = data.to(device, dtype=dtype)
else:
x = data.to(device, dtype=dtype)
if pars.train_unsupervised:
if pars.gaze_shift:
x = deform_gaze2(x, pars)
elif pars.distort == 3:
x1 = deform_data(x, 0.5, ['aff'], 4, 0.2, False, pars.device)
x2 = deform_data(x, 0.5, ['aff'], 4, 0.2, False, pars.device)
x = torch.cat((x1,x2), dim=0)
elif pars.distort == 0:
x = torch.cat(x, dim=0)
else:
y = targ.to(device=device, dtype=torch.long)
with torch.no_grad():
x1 = fix(x)
scores = model(x1)
if pars.train_unsupervised:
loss = criterion(scores)
else:
loss = criterion(scores, y)
running_loss += loss.item()
progress_bar.set_postfix(loss=loss.item())
progress_bar.update(x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss /= len(train_loader)
ep_loss.append(running_loss)
if pars.train_unsupervised:
print('Epoch %d, loss = %.4f' % (e, running_loss))
else:
acc_train = check_accuracy(train_loader, fix, model, pars)
print('Epoch %d, loss = %.4f, train.acc = %.4f' % (e, running_loss, acc_train))
if (e+1) % 10 == 0:
acc_test = check_accuracy(test_loader, fix, model, pars)
print('Epoch %d, test.acc = %.4f' % (e, acc_test))
ep_acc.append(acc_test)
if pars.train_unsupervised:
if (e+1) % pars.log_every == 0:
torch.save({'epoch': e + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, os.path.join(expdir, f"basenet_epoch_{e+1}_layer_{current_layer}.pth"))
def train_model_rand(train_loader, test_loader, net, classifier, pars, ep_loss, ep_acc):
"""
Train a model on CIFAR-10 using the PyTorch Module API.
Inputs:
- model: A PyTorch Module giving the model to train.
- optimizer: An Optimizer object we will use to train the model
- epochs: (Optional) A Python integer giving the number of epochs to train for
Returns: Nothing, but prints model accuracies during training.
"""
device=pars.device
dtype = torch.float32
# train_dat=data[0]; train_tar=data[1]
# val_dat=data_test[2]; val_tar=data_test[3]
# train_loader, test_loader = get_dataset(data, pars.batch_size, pars.num_train)
net = net.to(device=device) # move the model parameters to CPU/GPU
classifier = classifier.to(device=device)
print(net)
print(classifier)
if pars.train_unsupervised:
lr = pars.LR
# select self-supervised losses
if pars.loss == 'Hinge':
criterion = ContrastiveHinge(pars.batch_size, pars.thr1, pars.thr2, device=pars.device)
elif pars.loss == 'HingeNN':
criterion = ContrastiveHingeNN(pars.batch_size, pars.thr1, pars.thr2, pars.grad_block, device=pars.device)
elif pars.loss == 'HingeNN2':
criterion = ContrastiveHingeNN2(pars.batch_size, pars.thr1, pars.thr2, pars.grad_block, device=pars.device)
elif pars.loss == 'HingeNNFewerNegs':
criterion = HingeNNFewerNegs(pars.batch_size, pars.thr1, pars.thr2, pars.n_negs, pars.grad_block, device=pars.device)
else:
criterion = SimCLRLoss(pars.batch_size, pars.device)
else:
if pars.unsupervised:
lr = pars.clf_lr
loss = pars.clf_loss
else:
lr = pars.LR
loss = pars.loss
if loss == 'Hinge':
criterion = HingeLoss(pars.device)
else:
criterion = torch.nn.CrossEntropyLoss()
opts = []
for layer in np.arange(pars.NUM_LAYER):
model = nn.Sequential(
net[layer],
classifier[layer]
)
if pars.OPT=='SGD':
opts.append(torch.optim.SGD(model.parameters(), lr))
else:
opts.append(torch.optim.Adam(model.parameters(), lr))
start_epoch = 0
if pars.loadnet and pars.train_unsupervised:
checkpoint = torch.load(pars.loadnet)
net.load_state_dict(checkpoint['net'])
classifier.load_state_dict(checkpoint['classifier'])
opt_weights = checkpoint['optimizer']
for i in range(len(opts)):
opts[i].load_state_dict(opt_weights[i])
start_epoch = checkpoint['epoch']
print('Restart from epoch {}'.format(start_epoch))
print(opts)
epochs = pars.epochs * pars.NUM_LAYER
for e in range(start_epoch, epochs):
running_loss = 0
num_train = min(pars.num_train, len(train_loader.dataset))
total_n = 2 * num_train if pars.train_unsupervised else num_train
with tqdm(total=total_n) as progress_bar:
for batch_idx, (data, targ) in enumerate(train_loader):
choose_layer = torch.randint(0, pars.NUM_LAYER, (1,)).item()
fix = net[:choose_layer]
model = nn.Sequential(
net[choose_layer],
classifier[choose_layer]
)
optimizer = opts[choose_layer]
model.train() # put model to training mode
if pars.train_unsupervised:
if pars.distort == 3:
x = data.to(device, dtype=dtype)
x1 = deform_data(x, 0.5, ['aff'], 4, 0.2, False, pars.device)
x2 = deform_data(x, 0.5, ['aff'], 4, 0.2, False, pars.device)
x = torch.cat((x1,x2), dim=0)
elif pars.distort == 0:
x = [d.to(device, dtype=dtype) for d in data]
x = torch.cat(x, dim=0)
else:
x = data.to(device, dtype=dtype)
y = targ.to(device=device, dtype=torch.long)
with torch.no_grad():
x1 = fix(x)
scores = model(x1)
if pars.train_unsupervised:
loss = criterion(scores)
else:
loss = criterion(scores, y)
running_loss += loss.item()
progress_bar.set_postfix(loss=loss.item())
progress_bar.update(x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss /= (pars.num_train/pars.batch_size)
ep_loss.append(running_loss)
if pars.train_unsupervised:
print('Epoch %d, loss = %.4f' % (e, running_loss))
if (e+1) % pars.log_every == 0:
torch.save({'epoch': e + 1,
'net': net.state_dict(),
'classifier': classifier.state_dict(),
'optimizer' : [optimizer.state_dict() for optimizer in opts],
}, os.path.join(pars.expdir, f"basenet_epoch_{e+1}_layer.pth"))
else:
acc = check_accuracy_rand(test_loader, net, classifier, pars)
ep_acc.append(acc)
print('Epoch {:d}, loss = {:.4f}, val.acc = {}'.format(e, running_loss, [round(x,4) for x in acc]))
def check_accuracy(dataloader, fix, model, pars):
device=pars.device
# train_loader, test_loader = get_dataset(data, pars.batch_size, pars.num_train)
num_correct = 0
num_samples = 0
model.eval() # set model to evaluation mode
with torch.no_grad():
for batch_idx, (data, targ) in enumerate(dataloader):
x = data.to(device=device, dtype=torch.float32) # move to device, e.g. GPU
y = targ.to(device=device, dtype=torch.long)
x1 = fix(x)
scores = model(x1)
_, preds = scores.max(1)
num_correct += (preds == y).sum()
num_samples += preds.size(0)
acc = float(num_correct) / num_samples
#print('Got %d / %d correct (%.2f)' % (num_correct, num_samples, 100 * acc))
return acc
def check_accuracy_rand(data, net, classifier, pars):
all_acc = []
for i in range(0, pars.NUM_LAYER):
fix = net[:i]
model = nn.Sequential(
net[i],
classifier[i]
)
acc = check_accuracy(data, fix, model, pars)
all_acc.append(acc)
return all_acc