-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_backprop.py
105 lines (94 loc) · 3.34 KB
/
trainer_backprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
import numpy as np
from tqdm import tqdm
import time
import os
import json
import builder
from conv_data import get_data
from utils import plug_in
# use GPU when possible
use_gpu = True
device = 'cuda:0' if torch.cuda.is_available() and use_gpu else 'cpu'
print(device)
# acquire the dataset
train, val, test = get_data(data_set='cifar100')
batch_size = 2000
step_size = .0002
loss_param = {
"tau": 0.1,
"margin": 4,
"margin_pos": -2,
"margin_neg": -2,
"lambda": 4e-3,
"scale": 1/32
}
num_train = 46000
num_epochs = 400
perturb = 0.5
trans = ["aff"]
s_factor = 4
h_factor = 0.2
resume = ''
SS_loss = 'Barlow'
learning_rule = 'backprop'
def main():
model = builder.NetBP(batch_size, step_size, device, loss_param, loss=SS_loss)
model.to(device)
print(model)
model.train()
if resume:
if os.path.isfile(resume):
print(f"=> loading checkpoint '{resume}'")
checkpoint = torch.load(resume, map_location=device)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
model.optimizer.load_state_dict(checkpoint['optimizer'])
print(f"=> loaded checkpoint '{resume}' (epoch {checkpoint['epoch']})")
# continue training in the same path
timestr = resume.split('/')[2].strip()
model_path = os.path.join("../models", timestr)
else:
print(f"=> no checkpoint found at '{resume}'")
else:
start_epoch = 0
# if not resume, set up a new path to model and meta data
timestr = time.strftime("%Y%m%d-%H%M%S")
model_path = os.path.join("../models", timestr)
os.mkdir(model_path)
X = torch.from_numpy(train[0]).to(device)
X = X.type(torch.FloatTensor)
n = X.shape[0]
if (num_train is not None):
n = np.minimum(n, num_train)
SS_losses = []
for epoch in range(start_epoch, num_epochs):
train_loss = 0
with tqdm(total=2*n) as progress_bar:
for j in np.arange(0, n, batch_size):
data = X[j:j+batch_size].to(device)
# the augmented batch of images
data_aug = plug_in(data, perturb, trans, s_factor, h_factor, batch_size, device)
loss = model.run_grad(data_aug)
train_loss += loss.item()
progress_bar.set_postfix(loss=loss.item())
progress_bar.update(data_aug.size(0))
# epoch-wise average loss
train_loss /= (n//batch_size)
print('\nTraining set epoch {}: Avg. loss: {:.5f}'.format(epoch+1, train_loss))
# save model
if (epoch+1) % 10 == 0:
torch.save({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer' : model.optimizer.state_dict(),
}, os.path.join(model_path, f"epoch_{epoch+1}.pth"))
SS_losses.append(train_loss)
# save metadata
np.savez_compressed(os.path.join(model_path, "losses"), train_losses=np.array(SS_losses))
var_dict = {}
for variable in ["batch_size", "step_size", "loss_param", "num_train", "num_epochs", "SS_loss", "learning_rule"]:
var_dict[variable] = eval(variable)
with open(os.path.join(model_path, "hparams.json"), 'w') as f:
json.dump(var_dict, f)
if __name__ == '__main__':
main()