-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilder.py
276 lines (241 loc) · 11.7 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import torchvision
from torchvision import datasets
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import grad
import losses
class NewNet(nn.Module):
"""A supervised network with only the last layer trainable for linear evaluation"""
def __init__(self, step_size=0.003, p=.0):
super(NewNet, self).__init__()
# forward functions
self.f1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.f2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.f3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.f4 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
# use 10 here
self.fc10 = nn.Linear(1024, 10)
self.conv2_drop = nn.Dropout2d(p)
self.optimizer = torch.optim.Adam(list(self.fc10.parameters()), lr=step_size)
self.criterion = nn.CrossEntropyLoss()
def forward(self, x):
h1 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f1(x)), 2))
h2 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f2(h1)), 2))
h3 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f3(h2)), 2))
h4 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f4(h3)), 2))
output = self.fc10(h4.view(-1, 1024))
return output
def get_acc_and_loss(self, x, targ):
output = self.forward(x)
loss = self.criterion(output, targ)
pred = torch.max(output, 1)[1]
correct = torch.eq(pred, targ).sum()
return loss, correct
def run_grad(self, x, targ):
loss, correct = self.get_acc_and_loss(x, targ)
self.optimizer.zero_grad()
d_f = grad(outputs=loss, inputs=self.fc10.parameters(), retain_graph=True)
dw, db = d_f[0].clone(), d_f[1].clone()
self.fc10.weight.grad = dw
self.fc10.bias.grad = db
self.optimizer.step()
return loss, correct
class NetBP(nn.Module):
"""
The base encoder net trained with BP, for CIFAR
Inputs:
step_size: learning rate for backprop
loss_param: hyper-parameters for different SS losses
"""
def __init__(self, batch_size, step_size, device, loss_param, p=0., loss='SimCLR'):
super(NetBP, self).__init__()
self.batch_size = batch_size
self.loss = loss
self.f1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.f2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.f3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.f4 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.f5 = nn.Linear(1024, 64)
self.conv2_drop = nn.Dropout2d(p)
self.optimizer = torch.optim.Adam(self.parameters(), lr=step_size)
if loss == 'Naive':
self.criterion = losses.NaiveLoss(batch_size=batch_size, device=device)
elif loss == 'SimCLR':
self.criterion = losses.SimCLRLoss(tau=loss_param['tau'], batch_size=batch_size, device=device)
elif loss == 'Hinge':
self.criterion = losses.SSHingeLoss(loss_param['margin_pos'], loss_param['margin_neg'],
batch_size=batch_size, device=device)
elif loss == 'Barlow':
self.criterion = losses.BarlowTwinsLoss(loss_param['lambda'], loss_param['scale'],
batch_size=batch_size, device=device)
def forward(self, x):
"""
Input:
x: a batch of image
"""
h1 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f1(x)), 2))
h2 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f2(h1)), 2))
h3 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f3(h2)), 2))
h4 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f4(h3)), 2))
output = torch.tanh(self.f5(h4.view(-1, 1024)))
return output
def get_loss(self, data):
output = self.forward(data)
loss = self.criterion(output)
return loss
def run_grad(self, data):
loss = self.get_loss(data)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss
class NetDTP(nn.Module):
"""
The base encoder net trained with DTP, for CIFAR
Input:
step_size1: learning rate for the layer-wise autoencoders in TP
step_size2: learning rate for training the feedforward weights
loss_param: hyper-parameters for different SS losses
sigma: std of noise added to train the layer-wise auto-encoders
lr_targ: learning rate used to compute the first (top-layer) target
"""
def __init__(self, batch_size, step_size1, step_size2, device, loss_param, sigma=1, lr_targ=0.5, p=0., loss='SimCLR'):
super(NetDTP, self).__init__()
self.sigma = sigma
self.lr_targ = lr_targ
self.loss = loss
# forward functions
self.f1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.f2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.f3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.f4 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.f5 = nn.Linear(1024, 64)
# inverse functions to be trained
self.g2 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)
self.g3 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
self.g4 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1)
self.conv2_drop = nn.Dropout2d(p)
inv_params = list(self.g2.parameters()) + list(self.g3.parameters()) + list(self.g4.parameters())
self.inv_optimizers = torch.optim.Adam(inv_params, lr=step_size1)
self.fwd_optimizer1 = torch.optim.Adam(list(self.f1.parameters()), lr=step_size2)
self.fwd_optimizer2 = torch.optim.Adam(list(self.f2.parameters()), lr=step_size2)
self.fwd_optimizer3 = torch.optim.Adam(list(self.f3.parameters()), lr=step_size2)
self.fwd_optimizer4 = torch.optim.Adam(list(self.f4.parameters()), lr=step_size2)
self.fwd_optimizer5 = torch.optim.Adam(list(self.f5.parameters()), lr=step_size2)
self.fwd_optimizers = [self.fwd_optimizer1, self.fwd_optimizer2, self.fwd_optimizer3, self.fwd_optimizer4, self.fwd_optimizer5]
# contrastive global loss
if loss == 'Naive':
self.global_criterion = losses.NaiveLoss(batch_size=batch_size, device=device)
elif loss == 'SimCLR':
self.global_criterion = losses.SimCLRLoss(tau=loss_param['tau'], batch_size=batch_size, device=device)
elif loss == 'Hinge':
self.global_criterion = losses.SSHingeLoss(loss_param['margin_pos'], loss_param['margin_neg'],
batch_size=batch_size, device=device)
elif loss == 'Barlow':
self.global_criterion = losses.BarlowTwinsLoss(loss_param['lambda'], loss_param['scale'],
batch_size=batch_size, device=device)
# local loss
self.local_criterion = nn.MSELoss()
def forward(self, x):
h1 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f1(x)), 2))
h2 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f2(h1)), 2))
h3 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f3(h2)), 2))
h4 = torch.tanh(F.max_pool2d(self.conv2_drop(self.f4(h3)), 2))
output = torch.tanh(self.f5(h4.view(-1, 1024)))
forwards = [h1, h2, h3, h4, output]
return forwards
def global_loss(self, x):
forwards = self.forward(x)
output = forwards[-1]
loss = self.global_criterion(output)
return forwards, loss
def get_targets(self, x):
forwards, loss = self.global_loss(x)
h1, h2, h3, h4, output = forwards
# get the targets for all layers
h4.retain_grad()
d_h4 = grad(outputs=loss, inputs=h4, retain_graph=True)
h4_ = h4 - self.lr_targ * d_h4[0]
h3_ = h3 - torch.tanh(self.g4(h4)) + torch.tanh(self.g4(h4_))
h2_ = h2 - torch.tanh(self.g3(h3)) + torch.tanh(self.g3(h3_))
h1_ = h1 - torch.tanh(self.g2(h2)) + torch.tanh(self.g2(h2_))
# do not calculate gradients on the targets
targets = [h1_.clone().detach(), h2_.clone().detach(), h3_.clone().detach(), h4_.clone().detach()]
return forwards, loss, targets
def train_inverse(self, forwards):
"""train the approximate inverses g to make it close to f^(-1)"""
h1, h2, h3, h4, output = forwards
self.inv_optimizers.zero_grad()
# corrupted pairs
h3_c = (h3 + self.sigma*torch.randn(h3.shape).to(device))
fh3_c = torch.tanh(F.max_pool2d(self.f4(h3_c), 2))
L3 = self.local_criterion(torch.tanh(self.g4(fh3_c)), h3_c)
# gradients and update
d_g4 = grad(outputs=L3, inputs=self.g4.parameters(), retain_graph=True)
dw4, db4 = d_g4[0].clone(), d_g4[1].clone()
self.g4.weight.grad = dw4
self.g4.bias.grad = db4
h2_c = (h2 + self.sigma*torch.randn(h2.shape).to(device))
fh2_c = torch.tanh(F.max_pool2d(self.f3(h2_c), 2))
L2 = self.local_criterion(torch.tanh(self.g3(fh2_c)), h2_c)
# gradients and update
d_g3 = grad(outputs=L2, inputs=self.g3.parameters(), retain_graph=True)
dw3, db3 = d_g3[0].clone(), d_g3[1].clone()
self.g3.weight.grad = dw3
self.g3.bias.grad = db3
h1_c = h1 + self.sigma*torch.randn(h1.shape).to(device)
fh1_c = torch.tanh(F.max_pool2d(self.f2(h1_c), 2))
L1 = self.local_criterion(torch.tanh(self.g2(fh1_c)), h1_c)
# gradients and update
d_g2 = grad(outputs=L1, inputs=self.g2.parameters())
dw2, db2 = d_g2[0].clone(), d_g2[1].clone()
self.g2.weight.grad = dw2
self.g2.bias.grad = db2
self.inv_optimizers.step()
return [L1, L2, L3]
def run_grad(self, x):
forwards, global_loss, targets = self.get_targets(x)
# update g_i
inv_losses = self.train_inverse(forwards)
h1, h2, h3, h4 = forwards[:-1]
h1_, h2_, h3_, h4_ = targets
# targets are deemed as constants here
L1 = self.local_criterion(h1, h1_)
L2 = self.local_criterion(h2, h2_)
L3 = self.local_criterion(h3, h3_)
L4 = self.local_criterion(h4, h4_)
self.fwd_optimizer1.zero_grad()
d_f1 = grad(outputs=L1, inputs=self.f1.parameters(), retain_graph=True)
dw1, db1 = d_f1[0].clone(), d_f1[1].clone()
self.f1.weight.grad = dw1
self.f1.bias.grad = db1
self.fwd_optimizer1.step()
self.fwd_optimizer2.zero_grad()
d_f2 = grad(outputs=L2, inputs=self.f2.parameters(), retain_graph=True)
dw2, db2 = d_f2[0].clone(), d_f2[1].clone()
self.f2.weight.grad = dw2
self.f2.bias.grad = db2
self.fwd_optimizer2.step()
self.fwd_optimizer3.zero_grad()
d_f3 = grad(outputs=L3, inputs=self.f3.parameters(), retain_graph=True)
dw3, db3 = d_f3[0].clone(), d_f3[1].clone()
self.f3.weight.grad = dw3
self.f3.bias.grad = db3
self.fwd_optimizer3.step()
self.fwd_optimizer4.zero_grad()
d_f4 = grad(outputs=L4, inputs=self.f4.parameters(), retain_graph=True)
dw4, db4 = d_f4[0].clone(), d_f4[1].clone()
self.f4.weight.grad = dw4
self.f4.bias.grad = db4
self.fwd_optimizer4.step()
self.fwd_optimizer5.zero_grad()
d_f5 = grad(outputs=global_loss, inputs=self.f5.parameters())
dw5, db5 = d_f5[0].clone(), d_f5[1].clone()
self.f5.weight.grad = dw5
self.f5.bias.grad = db5
self.fwd_optimizer5.step()
training_losses = [L1, L2, L3, L4, global_loss]
return inv_losses, training_losses