-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabel_folder.py
140 lines (114 loc) · 4.81 KB
/
label_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Adapted from "label_image.py" from: https://www.tensorflow.org/hub/tutorials/image_retraining
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from downsample_data import get_image_files
import numpy as np
import tensorflow as tf
import pandas as pd
import tqdm
import argparse
import os
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def)
return graph
def read_tensor_from_image_file(file_name,
sess,
input_height=299,
input_width=299,
input_mean=0,
input_std=255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(
file_reader, channels=3, name="png_reader")
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(
tf.image.decode_gif(file_reader, name="gif_reader"))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name="bmp_reader")
else:
image_reader = tf.image.decode_jpeg(
file_reader, channels=3, name="jpeg_reader")
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
result = sess.run(normalized)
return result
if __name__ == "__main__":
input_height = 299
input_width = 299
input_mean = 0
input_std = 255
input_layer = "Placeholder"
output_layer = "final_result"
parser = argparse.ArgumentParser()
parser.add_argument("--folder", help="folder to be processed", required=True)
parser.add_argument("--csv_folder", help="out folder", required=True, default="csvs")
parser.add_argument("--graph", help="graph/model to be executed", required=True)
parser.add_argument("--input_height", type=int, help="input height")
parser.add_argument("--input_width", type=int, help="input width")
parser.add_argument("--input_mean", type=int, help="input mean")
parser.add_argument("--input_std", type=int, help="input std")
parser.add_argument("--input_layer", help="name of input layer")
parser.add_argument("--output_layer", help="name of output layer")
parser.add_argument("--prefix", help="prefix of output csv", required=True)
args = parser.parse_args()
model_file = args.graph
folder = args.folder
prefix = args.prefix
csv_folder = args.csv_folder
if args.input_height:
input_height = args.input_height
if args.input_width:
input_width = args.input_width
if args.input_mean:
input_mean = args.input_mean
if args.input_std:
input_std = args.input_std
if args.input_layer:
input_layer = args.input_layer
if args.output_layer:
output_layer = args.output_layer
graph = load_graph(model_file)
inferences = []
sess = tf.Session()
with tf.Session(graph=graph) as sess:
labels = list(sorted(os.listdir(folder)))
images = { d: get_image_files(d, folder) for d in labels }
for label, images in tqdm.tqdm(images.items()):
for file_name in tqdm.tqdm(images):
t = read_tensor_from_image_file(
file_name,
sess,
input_height=input_height,
input_width=input_width,
input_mean=input_mean,
input_std=input_std)
input_name = "import/" + input_layer
output_name = "import/" + output_layer
input_operation = graph.get_operation_by_name(input_name)
output_operation = graph.get_operation_by_name(output_name)
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
k = 5
top_k = results.argsort()[-k:][::-1]
data = {}
data["file_name"] = file_name
data["true_label"] = label
for i in top_k:
l = labels[i]
data["predicted_{}".format(l)] = results[i]
inferences.append(data)
df = pd.DataFrame(inferences)
df.to_csv("{}/{}-results.csv".format(csv_folder, prefix))