-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgft2_utils.py
338 lines (295 loc) · 13.5 KB
/
gft2_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
"""
utility functions
@author: giuliano giari, [email protected]
"""
import h5py
import logging
import matplotlib.pyplot as plt
import mne
import numpy as np
import os
import pandas as pd
import re
import seaborn as sns
import warnings
from scipy.io import loadmat, matlab
def nearest(array, value):
""" return the index of closest value in array """
return np.abs(np.asarray(array) - value).argmin()
def resample_data(data_array, data_times, resample_factor=4, verbose=False):
"""
resample the data to match the resample factor.
if resample factor is int this is done by taking one data point every resample_factor.
else, if resample factor is a float, resampling is done through interpolation [1].
this assumes proper filtering has been applied
[1] https://stackoverflow.com/questions/29085268/resample-a-numpy-array
"""
if verbose: print('resampling data')
if isinstance(resample_factor, int):
time_inds = slice(0, None, resample_factor)
times_res = data_times[time_inds]
data_res = data_array[..., time_inds]
elif isinstance(resample_factor, float):
time_inds = np.linspace(0, data_times[-1], round(len(data_times) / resample_factor))
times_res = np.interp(time_inds, data_times, data_times)
data_res = np.interp(time_inds, data_times, data_array)
return data_res, times_res
def split_segments_array(data_array, data_times, data_class, noverlap, seg_len, expected_seg):
"""
Split the data time series.
noverlap: amount of overlap, in seconds
seg_len: length of each segment, in seconds
"""
# check the dimensions of the input
if data_class == mne.source_estimate.VolSourceEstimate or \
data_class == mne.evoked.EvokedArray or \
data_class == mne.source_estimate.SourceEstimate or data_class == mne.io.fiff.raw.Raw:
assert data_array.ndim == 2 and data_array.shape[-1] == len(data_times)
elif data_class == mne.epochs.EpochsArray or data_class == mne.epochs.EpochsFIF:
assert data_array.ndim == 3 and data_array.shape[-1] == len(data_times)
# adjust the input to samples and compute some values
sfreq = 1 / np.diff(data_times)[0]
noverlap = int(sfreq * noverlap)
nperseg = int(seg_len * sfreq)
step = int(nperseg - noverlap)
# now check the segments
n_seg = len(np.arange(0, data_times[-1] * sfreq, step).astype(int))
if n_seg - expected_seg != 0:
warnings.warn(f"{n_seg-expected_seg}, 'segments are too short")
# split the time series into smaller segments
# this is adapted from scipy.signal.spectral._fft_helper line 1896 (version 1.6.1)
# https://github.com/scipy/scipy/blob/5ab7426247900db9de856e790b8bea1bd71aec49/scipy/signal/spectral.py#L1870
shape = data_array.shape[:-1] + (n_seg, nperseg)
strides = data_array.strides[:-1] + (step * data_array.strides[-1], data_array.strides[-1])
if data_class == mne.source_estimate.VolSourceEstimate or \
data_class == mne.evoked.EvokedArray or \
data_class == mne.source_estimate.SourceEstimate or data_class == mne.io.fiff.raw.Raw:
result = np.lib.stride_tricks.as_strided(data_array, shape=shape, strides=strides).transpose(1, 0, 2)
elif data_class == mne.epochs.EpochsArray or mne.epochs.EpochsFIF:
result = np.concatenate(np.lib.stride_tricks.as_strided(data_array,
shape=shape, strides=strides).transpose(0, 2, 1, 3), 0)
# check dimensions
if data_class == mne.source_estimate.VolSourceEstimate or data_class == mne.evoked.EvokedArray or data_class == mne.io.fiff.raw.Raw:
assert result.shape[0] == n_seg, 'different number of segments than requested'
elif data_class == mne.epochs.EpochsArray or mne.epochs.EpochsFIF:
assert result.shape[0] == n_seg * data_array.shape[0], 'different number of segments than requested'
assert result.ndim == 3, 'data array has more than 3 dimensions'
return result
def significance_bar(t, p, x, y, ax, lw=1):
"""
Plot significance bar
https://stackoverflow.com/questions/37707406/python-seaborn-how-to-add-significance-bars-and-asterisks-to-boxplots
"""
# check the procedure went fine
assert isinstance(t, (int, float))
assert isinstance(p, (int, float))
if p <= 0.001:
sig = '***'
elif p <= 0.01:
sig = '**'
elif p <= 0.05:
sig = '*'
else:
sig = 'n.s.'
ax.plot(x, y, 'k', lw=lw)
ax.text(np.mean(x), y[1], sig, ha='center', va='bottom', color='k')
# ax.set_ylim((0, y[0]+y[0]/2))
def extend_ylim(ax):
"""
Add a bit of space to the y axis limits of a plot.
"""
ylim = ax.get_ylim()
air = np.diff(ylim)[0] * 0.1
# ax.set_ylim(ylim[0] - air, ylim[1] + air)
return air
def load_mat(filename):
"""
taken from
https://stackoverflow.com/questions/48970785/complex-matlab-struct-mat-file-read-by-python
"""
def _check_vars(d):
"""
Checks if entries in dictionary are mat-objects. If yes
todict is called to change them to nested dictionaries
"""
for key in d:
if isinstance(d[key], matlab.mio5_params.mat_struct):
d[key] = _todict(d[key])
elif isinstance(d[key], np.ndarray):
d[key] = _toarray(d[key])
return d
def _todict(matobj):
"""
A recursive function which constructs from matobjects nested dictionaries
"""
d = {}
for strg in matobj._fieldnames:
elem = matobj.__dict__[strg]
if isinstance(elem, matlab.mio5_params.mat_struct):
d[strg] = _todict(elem)
elif isinstance(elem, np.ndarray):
d[strg] = _toarray(elem)
else:
d[strg] = elem
return d
def _toarray(ndarray):
"""
A recursive function which constructs ndarray from cellarrays
(which are loaded as numpy ndarrays), recursing into the elements
if they contain matobjects.
"""
if ndarray.dtype != 'float64':
elem_list = []
for sub_elem in ndarray:
if isinstance(sub_elem, matlab.mio5_params.mat_struct):
elem_list.append(_todict(sub_elem))
elif isinstance(sub_elem, np.ndarray):
elem_list.append(_toarray(sub_elem))
else:
elem_list.append(sub_elem)
return np.array(elem_list)
else:
return ndarray
data = loadmat(filename, struct_as_record=False, squeeze_me=True)
return _check_vars(data)
def realign_to_trj(data_object, trj_id, opt_local):
"""
Realign the single trials to one trajectory, returning the realigned data array
"""
logging.getLogger('mne').info(f'realigning trials in time to trajectory {trj_id}')
# define the max length of trials according to cycle time in angular resolution
max_len = 42 if list(data_object.event_id.keys())[0] == 'ang_res_30' else 40
out = []
for i_trl in range(len(data_object)):
# get the data of this trial
trl = data_object[i_trl]
# get the id of each trajectory, by multiplying the order of presentation for the number of cycles
# of this angular resolution, coded in .events[0, -1]
order_list = [int(x.replace('[', '').replace(']', '').strip())
for x in trl.metadata['order'].values[0][0].split(' ')
if x.replace('[', '').replace(']', '').strip()]
if data_object.filename.split('ses-')[-1].split('_')[0] == 'meg':
trj_list = order_list * opt_local['n_cycles'][str(trl.events[0, -1])] * 2
else:
trj_list = order_list * opt_local['n_cycles'][str(trl.events[0, -1])]
assert len(trj_list) == 264
# get the indices of the trj_id trajectory
trj_id_ind = np.where(np.array(trj_list) == trj_id)[0]
# here +1 is to account for python base-0 indexing
t0 = ( (min(trj_id_ind)+1) * opt_local['baserate_ms'] ) / 1000
tEnd = ( max(trj_id_ind) * opt_local['baserate_ms'] ) / 1000
# now check that this trial length matches the expected length, if not we add or remove some samples
if (tEnd - t0) != max_len:
# here is done using + since the difference in the second term is negative
tEnd += (max_len - (tEnd - t0))
# check
assert tEnd - t0 == max_len
# crop the time series to match the expected length
trl.crop(t0, tEnd)
# store the individual trials
out.append(trl.get_data().squeeze()[..., : int(max_len * data_object.info['sfreq']) ])
# return an epochs object
out = mne.EpochsArray(np.array(out), data_object.info, events=data_object.events, tmin=0, baseline=None,
event_id=data_object.event_id, reject=None, proj=False, metadata=data_object.metadata)
out.reject = data_object.reject
return out
def make_metadata(sub_id, ses_id, opt_local):
"""
Create metadata (i.e. pandas dataframes) to be added to the epochs
"""
meta_fname = f"{opt_local['epoPath']}{sub_id}_ses-{ses_id}_task-task_metadata.csv"
if not os.path.exists(meta_fname):
# initialize
order_list, trl_id_list = [], []
df = pd.DataFrame()
# add info about the order of the trajectories from the mat file created during the experiment and
# unique trial identifier, to be used to match with eye tracker edf file
if ses_id != 'meg':
mat = load_mat(
f"{opt_local['bidsPath']}beh/{sub_id.split('-')[-1]}_{ses_id[0]}/{sub_id.split('-')[-1]}_{ses_id[0]}_exp.mat")
else:
mat = load_mat(f"{opt_local['bidsPath']}beh/{sub_id.split('-')[-1]}/{sub_id.split('-')[-1]}_exp.mat")
for k in mat['stim'].keys():
if k.startswith('block_'):
if (sub_id == 'sub-19961224AAMN' and ses_id == 'dots' and k.startswith('block_6')) or \
(sub_id == 'sub-19940921BRFL' and ses_id == 'lines' and k.startswith('block_1')) or \
(sub_id == 'sub-19960711EEBN' and ses_id == 'lines' and k.startswith('block_3')) or \
(sub_id == 'sub-19960711EEBN' and ses_id == 'lines' and k.startswith('block_4')) or \
(sub_id == 'sub-20010614DMCA' and ses_id == 'dots' and k.startswith('block_1')):
# technical issues
continue
else:
for trl_id, trl_dict in mat['stim'][k].items():
order_list.append(trl_dict['order'])
trl_id_list.append(f"b{k.split('block_')[-1]}_t{trl_id.split('_')[-1]}")
# add it to the dataframe
df = df.assign(order=order_list, trl_id=trl_id_list)
df['order'].apply(pd.Series)
# df.set_index('trl_id', inplace=True)
# save
df.to_csv(meta_fname)
else: # load it
df = pd.read_csv(meta_fname, index_col=0, header=[0, 1])
return df
def assert_this(condition, message):
"""
Assert condition and save output message to log
:param condition: bool
:param message: str
"""
try:
assert condition
except:
logging.getLogger('mne').error(message)
raise AssertionError(message)
def euclidean_distance(q, p):
"""
euclidean distance in 2d
https://en.wikipedia.org/wiki/Euclidean_distance#Two_dimensions
"""
q = np.asarray(q)
p = np.asarray(p)
return np.sqrt(np.sum((q - p) ** 2))
def raincloud(df, x, y, ax, palette, order, orientation='v', jitter=.2, outliers=None):
"""
raincloud plot using seaborn
"""
# violin plot
ax = sns.violinplot(data=df, x=x, y=y, axes=ax, palette=palette, order=order, inner=None, orient=orientation, cut=0,
saturation=.85)
# remove half of the violin
for violin in ax.collections:
bbox = violin.get_paths()[0].get_extents()
x0, y0, width, height = bbox.bounds
if orientation == 'h':
y0 -= .01
height /= 2
elif orientation == 'v':
x0 -= .01
width /= 2
violin.set_clip_path(plt.Rectangle((x0, y0), width, height, transform=ax.transData))
xlim = ax.get_xlim()
ylim = ax.get_ylim()
# box plot
sns.boxplot(data=df, x=x, y=y, dodge=True, ax=ax, showfliers=False, saturation=1, color='k', width=0.2,
boxprops={'zorder': 3, 'facecolor': 'none'}, linewidth=1, order=order)
# define the number of collections before adding the dots
old_len_collections = len(ax.collections)
# plot individual data points as dots
if outliers is None:
sns.stripplot(data=df, x=x, y=y, jitter=jitter, dodge=False, size=4, ax=ax, palette=palette, alpha=.8,
edgecolor='k', linewidth=1, legend=False, order=order)
else:
# remove outliers from the dataframe
df_out = df.loc[outliers]
df_clean = df.loc[~outliers]
# plot separately outliers as diamonds and the rest as dots
sns.stripplot(data=df_out, x=x, y=y, jitter=jitter, dodge=False, size=4, ax=ax, palette=palette, alpha=.8,
edgecolor='k', linewidth=1, legend=False, order=order, marker='d')
sns.stripplot(data=df_clean, x=x, y=y, jitter=jitter, dodge=False, size=4, ax=ax, palette=palette, alpha=.8,
edgecolor='k', linewidth=1, legend=False, order=order)
# move
for dots in ax.collections[old_len_collections:]:
dots.set_offsets(dots.get_offsets() + np.array([jitter, 0]))
ax.set_xlim(xlim)
return ax