-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperform_kernel_regression_fair_learing.py
161 lines (125 loc) · 5.34 KB
/
perform_kernel_regression_fair_learing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#%%
import GPy
import numpy as np
from hyppo.independence import Hsic
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import time
import multiprocessing as mp
import pandas as pd
res_everything = pd.DataFrame(columns = ['sc_x', 'lmda', 'mu', 'rmse', 'hsic'])
# perform kernel regression fair learning
## the H function
def centre_mat(n_samples):
mat_1 = np.ones(n_samples)
# print mat_1
# print np.outer(mat_1,mat_1)
H = np.diag(mat_1) - (1.0 / n_samples) * np.outer(mat_1, mat_1)
return H
# step 1: define the regression function
def fair_regression(x_train, y_train, x_test, y_test, s_train, s_test, sc_x=1.0, sc_s=1.0, lmda=0.1, mu=0.0):
"""
This is the fair regression function that outputs the prediction, rmse and hsic
x_train,y_train,x_test,y_test: training and testing samples
s_train,s_test: sensitive variable
sc_x: lengthscale for kernel on x
sc_s: lengthscale for kernel on s
lmda: penalty parameter for function norm
mu: penalty parameter for HSIC
"""
# print('inside fair_regression')
# the dimensions of training set
stime = time.time()
input_number = x_train.shape[0]
input_dims = x_train.shape[1]
sensitive_dims = s_train.shape[1]
# the centering matrix
H = centre_mat(input_number)
# specify the kernel
k_x = GPy.kern.RBF(input_dims, lengthscale=sc_x)
k_s = GPy.kern.RBF(sensitive_dims, lengthscale=sc_s)
# compute Gram matrix
k_xx = k_x.K(x_train, x_train)
k_ss = k_s.K(s_train, s_train)
# k_ssh = np.matmul(k_ss, H)
hk_ssh = H.dot(k_ss).dot(H)
# compute the prediction
k_test = k_x.K(x_test, x_train)
inside_inv = k_xx + input_number * lmda * np.eye(input_number) + (mu / input_number) * np.dot(hk_ssh, k_xx)
est_beta = np.linalg.solve(inside_inv, y_train)
y_pred = np.dot(k_test, est_beta)
# compute error
error_pred = np.sqrt(np.sum((y_pred - y_test) ** 2) / y_test.shape[0])
# measure unfairness
y_train_pred = np.dot(k_xx, est_beta)
# k_yy = np.outer(y_train_pred, y_train_pred)
# HSIC = np.trace(np.dot(k_yy, hk_ssh)) / input_number ** 2
HSIC, pvalue = Hsic().test(s_train, y_train_pred, workers=-1, auto=True)
etime = time.time()
print('error_pred: ', error_pred, 'HSIC: ', HSIC, 'time: ', (stime-etime))
# Store everything: analytic propose only
global res_everything
res_everything = res_everything.append({'sc_x': sc_x, 'lmda': lmda, 'mu': mu, 'rmse': error_pred, 'hsic': HSIC}, ignore_index = True)
return y_pred, error_pred, HSIC
# step 2: define cross validation function
def cross_v(x, y, s, par, mu, NumFolds):
"""
x,y,s: the dataset
par: the parameters for kernel and cross-validation; order: (par for x kernel, par for s kernel, penalization)
NumFolds: number of cross validation
"""
xs = np.concatenate((x, s), axis=1)
sc_x = par[0]
sc_s = par[1]
lmda = par[2]
err_mat = np.zeros(NumFolds)
for ii in np.arange(NumFolds):
xs_train, xs_test, y_train, y_test = train_test_split(xs, y, test_size=0.2)
s_train = xs_train[:, -1].reshape(xs_train.shape[0], 1)
s_test = xs_test[:, -1].reshape(xs_test.shape[0], 1)
x_train = np.delete(xs_train, -1, 1)
x_test = np.delete(xs_test, -1, 1)
_, err_mat[ii], _ = fair_regression(x_train=x_train, y_train=y_train, x_test=x_test, y_test=y_test
, s_train=s_train, s_test=s_test, sc_x=sc_x, sc_s=sc_s, lmda=lmda, mu=mu)
err = np.mean(err_mat)
return err, err_mat
# step 3: combine the pipeline
def FairLearning(x_train, y_train, x_test, y_test, s_train, s_test, par_list, mu, NumFolds):
cv_length = len(par_list)
cv_mat = np.zeros(cv_length)
for ii in tqdm(np.arange(cv_length)):
# print(ii)
par = par_list[ii]
cv_mat[ii], _ = cross_v(x=x_train, y=y_train, s=s_train, par=par, mu=mu, NumFolds=NumFolds)
par_cv = par_list[np.argmin(cv_mat)]
sc_x = par_cv[0]
sc_s = par_cv[1]
lmda = par_cv[2]
y_pred, rmse, hsic = fair_regression(x_train=x_train, y_train=y_train, x_test=x_test, y_test=y_test,
s_train=s_train, s_test=s_test, sc_x=sc_x, sc_s=sc_s, lmda=lmda, mu=mu)
results_list = [mu, y_pred, rmse, hsic, lmda, sc_x]
print(results_list, '\n')
return results_list
def fl_wrapper(args):
x_train = args[0]
y_train = args[1]
x_test = args[2]
y_test = args[3]
s_train = args[4]
s_test = args[5]
par_list = args[6]
mu = args[8]
NumFolds = args[7]
result = FairLearning(x_train=x_train, y_train=y_train, x_test=x_test, y_test=y_test,
s_train=s_train, s_test=s_test, par_list=par_list, mu=mu, NumFolds=NumFolds)
return result
# define parallel function
def FairLearning_process(processes, x_train, y_train, x_test, y_test, s_train, s_test, par_list, mu_list, NumFolds):
pool = mp.Pool(processes=processes)
arg_list1 = [x_train, y_train, x_test, y_test, s_train, s_test, par_list, NumFolds]
arg_list = []
for mu in mu_list:
arg_list2 = arg_list1 + [mu]
arg_list.append(arg_list2)
results = pool.map(fl_wrapper, arg_list)
return results