pt --> torchscript--> pnnx --> ncnn
import os
import torch
# 0. pt模型下载及初始化
model = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v2', pretrained=True)
model.eval() # 下面两种方式都可以成功,推理结果也一样
# # inference
x = torch.randn(1, 3, 224, 224)
# 方法1: pnnx
# 1. pt --> torchscript
traced_script_module = torch.jit.trace(model, x, strict=False)
traced_script_module.save("ts.pt")
# 2. ts --> pnnx --> ncnn
os.system("pnnx ts.pt inputshape=[1,3,224,224]") # 2022年5月25日起,pnnx默认自动量化,不需要再次optmize
# 方法2: onnx
# # 1. pt ---> onnx
# torch_out = torch.onnx._export(model, x, "mobilenet_v2.onnx", export_params=True)
# # 2. onnx --> onnxsim
# os.system("python3 -m onnxsim mobilenet_v2.onnx sim.onnx")
# # 3. onnx --> ncnn
# os.system("onnx2ncnn sim.onnx ncnn.param ncnn.bin")
# # 4. ncnn --> optmize ---> ncnn
# os.system("ncnnoptimize ncnn.param ncnn.bin opt.param opt.bin 1") # 数字0 代表fp32 ;1代表fp16
# 两种转换都成功
两种转换都可以成功,且推理结果一样