Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, arxiv
PaddlePaddle training/validation code and pretrained models for Swin Transformer.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-03-16): Code is refactored.
- Update (2021-10-11): New main function for single and multiplt gpus are updated.
- Update (2021-10-11): Training from scratch is available.
- Update (2021-09-27): Model FLOPs and num params are uploaded.
- Update (2021-09-10): More ported weights are uploaded.
- Update (2021-08-11): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
swin_t_224 | 81.37 | 95.54 | 28.3M | 4.4G | 224 | 0.9 | bicubic | google/baidu |
swin_s_224 | 83.21 | 96.32 | 49.6M | 8.6G | 224 | 0.9 | bicubic | google/baidu |
swin_b_224 | 83.60 | 96.46 | 87.7M | 15.3G | 224 | 0.9 | bicubic | google/baidu |
swin_b_384 | 84.48 | 96.89 | 87.7M | 45.5G | 384 | 1.0 | bicubic | google/baidu |
swin_b_224_22kto1k | 85.27 | 97.56 | 87.7M | 15.3G | 224 | 0.9 | bicubic | google/baidu |
swin_b_384_22kto1k | 86.43 | 98.07 | 87.7M | 45.5G | 384 | 1.0 | bicubic | google/baidu |
swin_l_224_22kto1k | 86.32 | 97.90 | 196.4M | 34.3G | 224 | 0.9 | bicubic | google/baidu |
swin_l_384_22kto1k | 87.14 | 98.23 | 196.4M | 100.9G | 384 | 1.0 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./swin_tiny_patch4_window7_224.pdparams
, to use the swin_tiny_patch4_window7_224
model in python:
from config import get_config
from swin import build_swin as build_model
# config files in ./configs/
config = get_config('./configs/swin_tiny_patch4_window7_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./swin_tiny_patch4_window7_224.pdparams')
model.set_state_dict(model_state_dict)
To evaluate Swin model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/swin_tiny_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./swin_tiny_patch4_window7_224.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the Swin model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/swin_tiny_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
To finetune the Swin model on ImageNet2012, run the following script using command line:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/swin_base_patch4_window12_384.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-pretrained='./swin_base_patch4_window7_224.pdparams' \
-amp
Note: use
-pretrained
argument to set the pretrained model path, you may also need to modify the hyperparams defined in config file.
@article{liu2021swin,
title={Swin transformer: Hierarchical vision transformer using shifted windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
journal={arXiv preprint arXiv:2103.14030},
year={2021}
}