PVTv2: Improved Baselines with Pyramid Vision Transformer, arxiv
PaddlePaddle training/validation code and pretrained models for PVTv2.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-03-17): Code is refactored and bugs are fixed.
- Update (2021-09-27): Model FLOPs and # params are uploaded.
- Update (2021-08-11): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
pvtv2_b0 | 70.47 | 90.16 | 3.7M | 0.6G | 224 | 0.875 | bicubic | google/baidu |
pvtv2_b1 | 78.70 | 94.49 | 14.0M | 2.1G | 224 | 0.875 | bicubic | google/baidu |
pvtv2_b2 | 82.02 | 95.99 | 25.4M | 4.0G | 224 | 0.875 | bicubic | google/baidu |
pvtv2_b2_linear | 82.06 | 96.04 | 22.6M | 3.9G | 224 | 0.875 | bicubic | google/baidu |
pvtv2_b3 | 83.14 | 96.47 | 45.2M | 6.8G | 224 | 0.875 | bicubic | google/baidu |
pvtv2_b4 | 83.61 | 96.69 | 62.6M | 10.0G | 224 | 0.875 | bicubic | google/baidu |
pvtv2_b5 | 83.77 | 96.61 | 82.0M | 11.5G | 224 | 0.875 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./pvtv2_b0.pdparams
, to use the pvtv2_b0
model in python:
from config import get_config
from pvtv2 import build_pvtv2 as build_model
# config files in ./configs/
config = get_config('./configs/pvtv2_b0.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./pvtv2_b0.pdparams')
model.set_state_dict(model_state_dict)
To evaluate PVTv2 model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/pvtv2_b0.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./pvtv2_b0.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the PVTv2 model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/pvtv2_b0.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
@article{wang2021pvtv2,
title={Pvtv2: Improved baselines with pyramid vision transformer},
author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling},
journal={arXiv preprint arXiv:2106.13797},
year={2021}
}