An Improved One millisecond Mobile Backbone arxiv
PaddlePaddle training/validation code and pretrained models for the model released in: MobileOne.
The official PyTorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-08-29): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link | Link(fused) |
---|---|---|---|---|---|---|---|---|---|
mobileone_s0 | 71.14 | 89.65 | 5.4M | 1.1G | 224 | 0.875 | bicubic | google/baidu | google/baidu |
mobileone_s1 | 75.65 | 92.66 | 4.9M | 0.9G | 224 | 0.875 | bicubic | google/baidu | google/baidu |
mobileone_s2 | 77.22 | 93.49 | 8.0M | 1.3G | 224 | 0.875 | bicubic | google/baidu | google/baidu |
mobileone_s3 | 77.74 | 93.76 | 10.3M | 1.9G | 224 | 0.875 | bicubic | google/baidu | google/baidu |
mobileone_s4 | 79.07 | 94.23 | 15.1M | 3.0G | 224 | 0.875 | bicubic | google/baidu | google/baidu |
*The results are above are ported from official implemetation and evaluated on ImageNet2012 validation set.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./mobileone_s0.pdparams
, to use the mobileone_s0
model in python:
from config import get_config
from mobileone import build_mobileone as build_model
# config files in ./configs/
config = get_config('./configs/mobileone_s0.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./mobileone_s0.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/mobileone_s0.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./mobileone_s0.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/mobileone_s0.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
@article{vasu2022improved,
title={An Improved One millisecond Mobile Backbone},
author={Vasu, Pavan Kumar Anasosalu and Gabriel, James and Zhu, Jeff and Tuzel, Oncel and Ranjan, Anurag},
journal={arXiv preprint arXiv:2206.04040},
year={2022}
}