Focal Self-attention for Local-Global Interactions in Vision Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for Focal Transformer.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update(2022-04-11): Code is updated.
- Update(2021-10-21): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
Focal-T | 82.03 | 95.86 | 28.9M | 4.9G | 224 | 0.875 | bicubic | google/baidu |
Focal-T (use conv) | 82.70 | 96.14 | 30.8M | 4.9G | 224 | 0.875 | bicubic | google/baidu |
Focal-S | 83.55 | 96.29 | 51.1M | 9.4G | 224 | 0.875 | bicubic | google/baidu |
Focal-S (use conv) | 83.85 | 96.47 | 53.1M | 9.4G | 224 | 0.875 | bicubic | google/baidu |
Focal-B | 83.98 | 96.48 | 89.8M | 16.4G | 224 | 0.875 | bicubic | google/baidu |
Focal-B (use conv) | 84.18 | 96.61 | 93.3M | 16.4G | 224 | 0.875 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./focal_base_patch4_window7_224.pdparams
, to use the focal_base_patch4_window7_224
model in python:
from config import get_config
from focal_transformer import build_focal as build_model
# config files in ./configs/
config = get_config('./configs/focal_base_patch4_window7_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./focal_base_patch4_window7_224.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/focal_base_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./focal_base_patch4_window7_224.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/focal_base_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
-cfg
: path of model config file (.yaml), stored in./configs
.-dataset
: dataset name, e.g.,imagenet2012
,cifar10
,cifar100
.-data_path
: dataset folder path-batch_size
: batch size,default:32
.-image_size
: input image size,default224
.-num_classes
: number of classes, default:1000
.-output
: output folder for storing weights and logs,default:./output
.-pretrained
: pretrain model weights file path, (.pdparams
file ext is NOT needed) default:None
.-resume
: resume model weight and opt file path, (.paparams
and.pdopts
file ext are NOT needed, default:None
.-last_epoch
: start epoch,default:None
.-save_freq
: number of epochs to save checkpoint,default:1
.-log_freq
: number of iters to print logging,default:100
.-validate_freq
: number of epochs to do validation during training,default:10
.-accum_iter
: number of iteration for iter accumulation, default: 1.-num_workers
: number of workers for data loading,default:1
.-ngpus
: number of GPUs to use,you can control GPUs by CUDA_VISIBLE_DEVICES, just set this to -1 default:-1
.-eval
: start eval mode.-amp
: start amp training.
-cfg
,-dataset
and-data_path
inmain_single_gpu.py
andmain_multi_gpu.py
are MUST-HAVE settings.
@misc{yang2021focal,
title={Focal Self-attention for Local-Global Interactions in Vision Transformers},
author={Jianwei Yang and Chunyuan Li and Pengchuan Zhang and Xiyang Dai and Bin Xiao and Lu Yuan and Jianfeng Gao},
year={2021},
eprint={2107.00641},
archivePrefix={arXiv},
primaryClass={cs.CV}
}