-
Notifications
You must be signed in to change notification settings - Fork 319
/
model_ema.py
61 lines (50 loc) · 2.12 KB
/
model_ema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Implement the Exponential Model Averaging
This is paddle hack from:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/utils/model_ema.py
"""
import copy
import paddle
class ModelEma:
"""Model Ema
A moving average is kept of model weights and buffers.
Note that for multiple gpu, ema must be defined after mode init,
but before DataParallel.
Args:
model: nn.Layer, original modela with learnable params
decay: float, decay rate for each update, default: 0.999
"""
def __init__(self, model, decay=0.999):
self.module = copy.deepcopy(model)
self.module.eval()
self.decay = decay
@paddle.no_grad()
def _update(self, model, update_fn):
# update ema model parameters by model parameters
for (_, ema_param), (_, model_param) in zip(
self.module.named_parameters(), model.named_parameters()):
ema_param.set_value(copy.deepcopy(update_fn(ema_param, model_param)))
# update ema model buffers by model buffers
for (_, ema_buf), (_, model_buf) in zip(
self.module.named_buffers(), model.named_buffers()):
ema_buf.set_value(copy.deepcopy(update_fn(ema_buf, model_buf)))
def update(self, model):
self._update(model, update_fn=lambda e, m: self.decay * e + (1 - self.decay) * m)
def set(self, model):
self._update(model, update_fn=lambda e, m: m)
def to(self, device):
self.module.to(device)
def state_dict(self):
return self.module.state_dict()