CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows, arxiv
PaddlePaddle training/validation code and pretrained models for CSWin Transformer.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-03-16): Code is refactored.
- Update (2021-09-27): Model FLOPs and # params are uploaded.
- Update (2021-08-11): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
cswin_tiny_224 | 82.81 | 96.30 | 22.3M | 4.2G | 224 | 0.9 | bicubic | google/baidu |
cswin_small_224 | 83.60 | 96.58 | 34.6M | 6.5G | 224 | 0.9 | bicubic | google/baidu |
cswin_base_224 | 84.23 | 96.91 | 77.4M | 14.6G | 224 | 0.9 | bicubic | google/baidu |
cswin_base_384 | 85.51 | 97.48 | 77.4M | 43.1G | 384 | 1.0 | bicubic | google/baidu |
cswin_large_224 | 86.52 | 97.99 | 173.3M | 32.5G | 224 | 0.9 | bicubic | google/baidu |
cswin_large_384 | 87.49 | 98.35 | 173.3M | 96.1G | 384 | 1.0 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
For finetuning using 22k model, the ported weight file can be downloaded from:
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./cswin_tiny_224.pdparams
, to use the cswin_tiny_224
model in python:
from config import get_config
from cswin import build_cswin as build_model
# config files in ./configs/
config = get_config('./configs/cswin_tiny_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./cswin_tiny_224.pdparams')
model.set_state_dict(model_state_dict)
To evaluate CSwin model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/cswin_tiny_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./cswin_tiny_224.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the CSwin model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/cswin_tiny_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
To finetune the Swin model on ImageNet2012, run the following script using command line:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/cswin_base_384.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-pretrained='./cswin_base_224.pdparams' \
-amp
Note: use
-pretrained
argument to set the pretrained model path, you may also need to modify the hyperparams defined in config file.
@article{dong2021cswin,
title={CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows},
author={Dong, Xiaoyi and Bao, Jianmin and Chen, Dongdong and Zhang, Weiming and Yu, Nenghai and Yuan, Lu and Chen, Dong and Guo, Baining},
journal={arXiv preprint arXiv:2107.00652},
year={2021}
}