-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathapp_insights_queries.txt
36 lines (33 loc) · 1.57 KB
/
app_insights_queries.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
TITLE: Average Evaluation Score Over Time
dependencies
| where name == "run_evaluators"
| project timestamp, results = parse_json(tostring(customDimensions["output"]))
| evaluate bag_unpack(results)
| summarize avg_groundedness=avg(gpt_groundedness), avg_coherence=avg(gpt_coherence), avg_fluency=avg(gpt_fluency), avg_relevance=avg(gpt_relevance) by bin(timestamp, 2h)
| render timechart
TITLE: Tokens Used Over Time
dependencies
| extend
total_tokens = toint(customDimensions["inputs.data.usage.total_tokens"]),
prompt_tokens = toint(customDimensions["inputs.data.usage.prompt_tokens"]),
completion_tokens = toint(customDimensions["inputs.data.usage.completion_tokens"])
| summarize sum(total_tokens), sum(prompt_tokens), sum(completion_tokens) by bin(timestamp, 5m)
| render timechart
TITLE: Tokens Used by Model
dependencies
| where name == "AzureOpenAIExecutor"
| extend inputs = tostring(customDimensions["result.model"])
| extend
total_tokens = toint(customDimensions["result.usage.total_tokens"]),
prompt_tokens = toint(customDimensions["result.usage.prompt_tokens"]),
completion_tokens = toint(customDimensions["result.usage.completion_tokens"]),
model = tostring(inputs)
| summarize prompt = sum(prompt_tokens), completion = sum(completion_tokens), total = sum(total_tokens) by model
| render columnchart
TITLE: Average Model Duration
dependencies
| where name == "AzureOpenAIExecutor"
| extend inputs = tostring(customDimensions["result.model"])
| project inputs, duration_sec=duration/1000
| summarize avg(duration_sec) by tostring(inputs)
| render columnchart