-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMtech_wine_PCA.py
337 lines (195 loc) · 6.98 KB
/
Mtech_wine_PCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#!/usr/bin/env python
# coding: utf-8
# # PCA clustering for WINE dataset
# In[1]:
'''Determining Principle Component Analysis for Wine Dataset'''
# Importing Preliminary Libraries
import pandas as pd
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
from sklearn import linear_model
#from sklearn import linear_model.fit
from sklearn.linear_model import LinearRegression
from sklearn.decomposition import PCA
from sklearn.decomposition import FactorAnalysis
from factor_analyzer import FactorAnalyzer
# In[2]:
# Loading Wine dataset
df = pd.read_csv('Wine.csv')
'''Determing only first 5 values '''
df.head()
# In[3]:
# Taking only the dependent value from the dataset
df2 = df[['Alcohol', 'Malic_Acid', 'Ash', 'Ash_Alcanity', 'Magnesium', 'Total_Phenols', 'Flavanoids', 'Nonflavanoid_Phenols', 'Proanthocyanins', 'Color_Intensity', 'Hue', 'OD280', 'Proline']]
df2.head()
# # PCA cluster plot for Wine Dataset
# In[1]:
#Importing libraries from SKLEARN
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
# In[6]:
#loading Wine dataset
wine = datasets.load_wine()
X = wine.data
y = wine.target
target_names = wine.target_names
pca = PCA(n_components=13)
wine_X = pca.fit(X).transform(X)
# In[121]:
plt.scatter(wine_X[y == 0, 3], wine_X[y == 0, 0], s =80, c = 'orange', label = 'Type 0')
plt.scatter(wine_X[y == 1, 3], wine_X[y == 1, 0], s =80, c = 'yellow', label = 'Type 1')
plt.scatter(wine_X[y == 2, 3], wine_X[y == 2, 0], s =80, c = 'green', label = 'Type 2')
plt.title('PCA plot for Wine Dataset')
plt.legend()
# In[71]:
import pandas as pd
wine_dataframe = pd.DataFrame(wine_X, columns=wine.feature_names)
# Create a scatter matrix from the dataframe, color by y_train
grr = pd.plotting.scatter_matrix(wine_dataframe, c=y, figsize=(15, 15), marker='o',
hist_kwds={'bins': 20}, s=60, alpha=.8)
# In[3]:
'''KNN classifier which is a type of supervised Machine Learning Technique.
This is used to detect the accuracy and classification of the given dataset'''
# Importing Libraries for Modelling.
from sklearn import neighbors, datasets, preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
# In[57]:
# Assigning values of X and y from dataset
X, y = wine.data[:, :], wine.target
''' Here X is assigned as all the column data(SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm) and
y is assigned as Species value(Iris-setosa, Iris-versicolour, Iris-virginica) ))'''
#Setting training and testing values
Xtrain, Xtest, y_train, y_test = train_test_split(X, y)
scaler = preprocessing.StandardScaler().fit(Xtrain)
Xtrain = scaler.transform(Xtrain)
Xtest = scaler.transform(Xtest)
# Modeling is done using KNN classifiers.
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
knn.fit(Xtrain, y_train)
y_pred = knn.predict(Xtest)
# Display the Output
print('Accuracy Score:', accuracy_score(y_test, y_pred))
print('Confusion matrix \n', confusion_matrix(y_test, y_pred))
print('Classification \n', classification_report(y_test, y_pred))
# In[60]:
from sklearn.metrics import cohen_kappa_score
cluster = cohen_kappa_score(y_test, y_pred)
cluster
# In[7]:
X, y = wine.data[:, :], wine.target
Xtrain, Xtest, y_train, y_test = train_test_split(X, y)
# # Logistic Regression Accuracy
# In[8]:
#Logistic Regression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(Xtrain,y_train)
y_pred = classifier.predict(Xtest)
cm = confusion_matrix(y_test,y_pred)
accuracy = accuracy_score(y_test,y_pred)
print("Logistic Regression :")
print("Accuracy = ", accuracy)
print(cm)
# # Cohen Kappa Accuracy for LR
# In[9]:
from sklearn.metrics import cohen_kappa_score
cluster = cohen_kappa_score(y_test, y_pred)
cluster
# # K-Nearest Neighbors Accuracy
# In[17]:
#K Nearest Neighbors
from sklearn.neighbors import KNeighborsClassifier
Xtrain, Xtest, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
classifier = KNeighborsClassifier(n_neighbors=5, p=2, metric='minkowski')
classifier.fit(Xtrain,y_train)
y_pred = classifier.predict(Xtest)
cm = confusion_matrix(y_test,y_pred)
accuracy = accuracy_score(y_test,y_pred)
print("K Nearest Neighbors :")
print("Accuracy = ", accuracy)
print(cm)
# # Cohen Kappa Accuracy for KNN
# In[18]:
from sklearn.metrics import cohen_kappa_score
cluster = cohen_kappa_score(y_test, y_pred)
cluster
# # Support Vector Machine Accuracy
# In[64]:
#Support Vector Machine
from sklearn.svm import SVC
Xtrain, Xtest, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
classifier = SVC()
classifier.fit(Xtrain,y_train)
y_pred = classifier.predict(Xtest)
cm = confusion_matrix(y_test,y_pred)
accuracy = accuracy_score(y_test,y_pred)
print("Support Vector Machine:")
print("Accuracy = ", accuracy)
print(cm)
# # Cohen Kappa Accuracy for SVM
# In[65]:
from sklearn.metrics import cohen_kappa_score
cluster = cohen_kappa_score(y_test, y_pred)
cluster
# # Gaussian Naive Bayes Accuracy
# In[50]:
Xtrain, Xtest, y_train, y_test = train_test_split(X, y)
# In[51]:
#Gaussian Naive Bayes
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(Xtrain,y_train)
y_pred = classifier.predict(Xtest)
cm = confusion_matrix(y_test,y_pred)
accuracy = accuracy_score(y_test,y_pred)
print("Gaussian Naive Bayes :")
print("Accuracy = ", accuracy)
print(cm)
# # Cohen Kappa Accuracy for GNB
# In[52]:
from sklearn.metrics import cohen_kappa_score
cluster = cohen_kappa_score(y_test, y_pred)
cluster
# # Decision Tree Classifier Accuracy
# In[53]:
#Decision Tree Classifier
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier as DT
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
classifier = DT(criterion='entropy', random_state=0)
classifier.fit(Xtrain,y_train)
y_pred = classifier.predict(Xtest)
cm = confusion_matrix(y_test,y_pred)
print("Decision Tree Classifier :")
print("Accuracy = ", accuracy)
print(cm)
# # Cohen Kappa Accuracy for DTC
# In[54]:
from sklearn.metrics import cohen_kappa_score
cluster = cohen_kappa_score(y_test, y_pred)
cluster
# # Random Forest Classifier Accuracy
# In[55]:
#Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier as RF
Xtrain, Xtest, y_train, y_test = train_test_split(X, y)
classifier = RF(n_estimators=10, criterion='entropy', random_state=0)
classifier.fit(Xtrain,y_train)
y_pred = classifier.predict(Xtest)
cm = confusion_matrix(y_test,y_pred)
print("Random Forest Classifier :")
print("Accuracy = ", accuracy)
print(cm)
# # Cohen Kappa Accuracy for RFC
# In[56]:
from sklearn.metrics import cohen_kappa_score
cluster = cohen_kappa_score(y_test, y_pred)
cluster
# In[ ]: