forked from HIPS/autograd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgplvm.py
87 lines (69 loc) · 3.07 KB
/
gplvm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Implements a Gaussian process latent-variable model.
# The (high-dimensional) data, Y is explained by some low-dimensional latent
# data X, warped by a function drawn from a GP prior (f). So Y = f(X), but
# we don't know X or f.
#
# In this example, we optimize X and the hyperparameters of the GP, but
# we integrate over all possible functions f.
#
# Normally the observed data would be high-dimensional.
#
# David Duvenaud ([email protected])
from __future__ import absolute_import
from __future__ import print_function
import matplotlib.pyplot as plt
import autograd.numpy as np
import autograd.numpy.random as npr
from autograd import value_and_grad
from scipy.optimize import minimize
from autograd.scipy.stats import norm
from gaussian_process import make_gp_funs, rbf_covariance
from data import make_pinwheel
if __name__ == '__main__':
data_dimension = 2 # Normally the data dimension would be much higher.
latent_dimension = 2
# Build model and objective function.
params_per_gp, predict, log_marginal_likelihood = \
make_gp_funs(rbf_covariance, num_cov_params=latent_dimension + 1)
total_gp_params = data_dimension * params_per_gp
data = make_pinwheel(radial_std=0.3, tangential_std=0.05, num_classes=3,
num_per_class=30, rate=0.4)
datalen = data.shape[0]
num_latent_params = datalen * latent_dimension
def unpack_params(params):
gp_params = np.reshape(params[:total_gp_params], (data_dimension, params_per_gp))
latents = np.reshape(params[total_gp_params:], (datalen, latent_dimension))
return gp_params, latents
def objective(params):
gp_params, latents = unpack_params(params)
gp_likelihood = sum([log_marginal_likelihood(gp_params[i], latents, data[:, i])
for i in range(data_dimension)])
latent_prior_likelihood = np.sum(norm.logpdf(latents))
return -gp_likelihood - latent_prior_likelihood
# Set up figure.
fig = plt.figure(figsize=(12,8), facecolor='white')
latent_ax = fig.add_subplot(121, frameon=False)
data_ax = fig.add_subplot(122, frameon=False)
plt.show(block=False)
def callback(params):
print("Log likelihood {}".format(-objective(params)))
gp_params, latents = unpack_params(params)
data_ax.cla()
data_ax.plot(data[:, 0], data[:, 1], 'bx')
data_ax.set_xticks([])
data_ax.set_yticks([])
data_ax.set_title('Observed Data')
latent_ax.cla()
latent_ax.plot(latents[:,0], latents[:,1], 'kx')
latent_ax.set_xticks([])
latent_ax.set_yticks([])
latent_ax.set_xlim([-2, 2])
latent_ax.set_ylim([-2, 2])
latent_ax.set_title('Latent coordinates')
plt.draw()
plt.pause(1.0/60.0)
# Initialize covariance parameters
rs = npr.RandomState(1)
init_params = rs.randn(total_gp_params + num_latent_params) * 0.1
print("Optimizing covariance parameters and latent variable locations...")
minimize(value_and_grad(objective), init_params, jac=True, method='CG', callback=callback)