forked from HIPS/autograd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayesian_optimization.py
133 lines (100 loc) · 4.83 KB
/
bayesian_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""This Bayesian optimization demo using gradient-based optimization
to find the next query point."""
from __future__ import absolute_import
from __future__ import print_function
import matplotlib.pyplot as plt
import autograd.numpy as np
import autograd.numpy.random as npr
from autograd import value_and_grad
from scipy.optimize import minimize
from gaussian_process import make_gp_funs, rbf_covariance
from autograd.scipy.stats import norm
def probability_of_improvement(mean, std, max_so_far):
return norm.cdf(max_so_far, mean, std)
def expected_new_max(mean, std, max_so_far):
return max_so_far - \
(mean - max_so_far) * norm.cdf(mean, max_so_far, std) \
+ std * norm.pdf(mean, max_so_far, std)
def init_covariance_params(num_params):
return np.zeros(num_params)
def defaultmax(x, default=-np.inf):
if x.size == 0:
return default
return np.max(x)
def bayesian_optimize(func, domain_min, domain_max, num_iters=20, callback=None):
D = len(domain_min)
num_params, predict, log_marginal_likelihood = \
make_gp_funs(rbf_covariance, num_cov_params=D + 1)
model_params = init_covariance_params(num_params)
def optimize_gp_params(init_params, X, y):
log_hyperprior = lambda params: np.sum(norm.logpdf(params, 0., 100.))
objective = lambda params: -log_marginal_likelihood(params, X, y) -log_hyperprior(params)
return minimize(value_and_grad(objective), init_params, jac=True, method='CG').x
def choose_next_point(domain_min, domain_max, acquisition_function, num_tries=15, rs=npr.RandomState(0)):
"""Uses gradient-based optimization to find next query point."""
init_points = rs.rand(num_tries, D) * (domain_max - domain_min) + domain_min
grad_obj = value_and_grad(lambda x: -acquisition_function(x))
def optimize_point(init_point):
print('.', end='')
result = minimize(grad_obj, x0=init_point, jac=True, method='L-BFGS-B',
options={'maxiter': 10}, bounds=list(zip(domain_min, domain_max)))
return result.x, acquisition_function(result.x)
optimzed_points, optimized_values = list(zip(*list(map(optimize_point, init_points))))
print()
best_ix = np.argmax(optimized_values)
return np.atleast_2d(optimzed_points[best_ix])
# Start by evaluating once in the middle of the domain.
X = np.zeros((0, D))
y = np.zeros((0))
X = np.concatenate((X, np.reshape((domain_max - domain_min) / 2.0, (D, 1))))
y = np.concatenate((y, np.reshape(np.array(func(X)), (1,))))
for i in range(num_iters):
if i > 1:
print("Optimizing model parameters...")
model_params = optimize_gp_params(model_params, X, y)
print("Choosing where to look next", end='')
def predict_func(xstar):
mean, cov = predict(model_params, X, y, xstar)
return mean, np.sqrt(np.diag(cov))
def acquisition_function(xstar):
xstar = np.atleast_2d(xstar) # To work around a bug in scipy.minimize
mean, std = predict_func(xstar)
return expected_new_max(mean, std, defaultmax(y))
next_point = choose_next_point(domain_min, domain_max, acquisition_function)
print("Evaluating expensive function...")
new_value = func(next_point)
X = np.concatenate((X, next_point))
y = np.concatenate((y, np.reshape(np.array(new_value), (1,))))
if callback:
callback(X, y, predict_func, acquisition_function, next_point, new_value)
best_ix = np.argmax(y)
return X[best_ix, :], y[best_ix]
if __name__ == '__main__':
def example_function(x):
return np.sum(x * np.sin(10.0*x) + x) - 1
domain_min = np.array([0.0])
domain_max = np.array([1.1])
# Set up figure.
fig = plt.figure(figsize=(12,8), facecolor='white')
ax = fig.add_subplot(111, frameon=False)
plt.show(block=False)
def callback(X, y, predict_func, acquisition_function, next_point, new_value):
plt.cla()
# Show posterior marginals.
plot_xs = np.reshape(np.linspace(domain_min, domain_max, 300), (300,1))
pred_mean, pred_std = predict_func(plot_xs)
ax.plot(plot_xs, pred_mean, 'b')
ax.fill(np.concatenate([plot_xs, plot_xs[::-1]]),
np.concatenate([pred_mean - 1.96 * pred_std,
(pred_mean + 1.96 * pred_std)[::-1]]),
alpha=.15, fc='Blue', ec='None')
ax.plot(X, y, 'kx')
ax.plot(next_point, new_value, 'ro')
alphas = acquisition_function(plot_xs)
ax.plot(plot_xs, alphas, 'r')
ax.set_ylim([-1.5, 1.5])
ax.set_xticks([])
ax.set_yticks([])
plt.draw()
plt.pause(1)
best_x, best_y = bayesian_optimize(example_function, domain_min, domain_max, callback=callback)