-
Notifications
You must be signed in to change notification settings - Fork 25
/
Apriori-algorithm-using-HashTree.py
250 lines (214 loc) · 9.03 KB
/
Apriori-algorithm-using-HashTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import itertools
import time
#take input of file name and minimum support count
print("Enter the filename:")
filename = input()
print("Enter the minimum support count:")
min_support = int(input())
#read data from txt file
with open(filename) as f:
content = f.readlines()
content = [x.strip() for x in content]
Transaction = [] #to store transaction
Frequent_items_value = {} #to store all frequent item sets
#to fill values in transaction from txt file
for i in range(0,len(content)):
Transaction.append(content[i].split())
#function to get frequent one itemset
def frequent_one_item(Transaction,min_support):
candidate1 = {}
for i in range(0,len(Transaction)):
for j in range(0,len(Transaction[i])):
if Transaction[i][j] not in candidate1:
candidate1[Transaction[i][j]] = 1
else:
candidate1[Transaction[i][j]] += 1
frequentitem1 = [] #to get frequent 1 itemsets with minimum support count
for value in candidate1:
if candidate1[value] >= min_support:
frequentitem1 = frequentitem1 + [[value]]
Frequent_items_value[tuple(value)] = candidate1[value]
return frequentitem1
values = frequent_one_item(Transaction,min_support)
print(values)
print(Frequent_items_value)
# to remove infrequent 1 itemsets from transaction
Transaction1 = []
for i in range(0,len(Transaction)):
list_val = []
for j in range(0,len(Transaction[i])):
if [Transaction[i][j]] in values:
list_val.append(Transaction[i][j])
Transaction1.append(list_val)
#class of Hash node
class Hash_node:
def __init__(self):
self.children = {} #pointer to its children
self.Leaf_status = True #to know the status whether current node is leaf or not
self.bucket = {} #contains itemsets in bucket
#class of constructing and getting hashtree
class HashTree:
# class constructor
def __init__(self, max_leaf_count, max_child_count):
self.root = Hash_node()
self.max_leaf_count = max_leaf_count
self.max_child_count = max_child_count
self.frequent_itemsets = []
# function to recursive insertion to make hashtree
def recursively_insert(self, node, itemset, index, count):
if index == len(itemset):
if itemset in node.bucket:
node.bucket[itemset] += count
else:
node.bucket[itemset] = count
return
if node.Leaf_status: #if node is leaf
if itemset in node.bucket:
node.bucket[itemset] += count
else:
node.bucket[itemset] = count
if len(node.bucket) == self.max_leaf_count: #if bucket capacity increases
for old_itemset, old_count in node.bucket.items():
hash_key = self.hash_function(old_itemset[index]) #do hashing on next index
if hash_key not in node.children:
node.children[hash_key] = Hash_node()
self.recursively_insert(node.children[hash_key], old_itemset, index + 1, old_count)
#since no more requirement of this bucket
del node.bucket
node.Leaf_status = False
else: #if node is not leaf
hash_key = self.hash_function(itemset[index])
if hash_key not in node.children:
node.children[hash_key] = Hash_node()
self.recursively_insert(node.children[hash_key], itemset, index + 1, count)
def insert(self, itemset):
itemset = tuple(itemset)
self.recursively_insert(self.root, itemset, 0, 0)
# to add support to candidate itemsets. Transverse the Tree and find the bucket in which this itemset is present.
def add_support(self, itemset):
Transverse_HNode = self.root
itemset = tuple(itemset)
index = 0
while True:
if Transverse_HNode.Leaf_status:
if itemset in Transverse_HNode.bucket: #found the itemset in this bucket
Transverse_HNode.bucket[itemset] += 1 #increment the count of this itemset.
break
hash_key = self.hash_function(itemset[index])
if hash_key in Transverse_HNode.children:
Transverse_HNode = Transverse_HNode.children[hash_key]
else:
break
index += 1
# to transverse the hashtree to get frequent itemsets with minimum support count
def get_frequent_itemsets(self, node, support_count,frequent_itemsets):
if node.Leaf_status:
for key, value in node.bucket.items():
if value >= support_count: #if it satisfies the condition
frequent_itemsets.append(list(key)) #then add it to frequent itemsets.
Frequent_items_value[key] = value
return
for child in node.children.values():
self.get_frequent_itemsets(child, support_count,frequent_itemsets)
# hash function for making HashTree
def hash_function(self, val):
return int(val) % self.max_child_count
#To generate hash tree from candidate itemsets
def generate_hash_tree(candidate_itemsets, max_leaf_count, max_child_count):
htree = HashTree(max_child_count, max_leaf_count) #create instance of HashTree
for itemset in candidate_itemsets:
htree.insert(itemset) #to insert itemset into Hashtree
return htree
#to generate subsets of itemsets of size k
def generate_k_subsets(dataset, length):
subsets = []
for itemset in dataset:
subsets.extend(map(list, itertools.combinations(itemset, length)))
return subsets
def subset_generation(ck_data,l):
return map(list,set(itertools.combinations(ck_data,l)))
#apriori generate function to generate ck
def apriori_generate(dataset,k):
ck = []
#join step
lenlk = len(dataset)
for i in range(lenlk):
for j in range(i+1,lenlk):
L1 = list(dataset[i])[:k - 2]
L2 = list(dataset[j])[:k - 2]
if L1 == L2:
ck.append(sorted(list(set(dataset[i]) | set(dataset[j]))))
#prune step
final_ck = []
for candidate in ck:
all_subsets = list(subset_generation(set(candidate), k - 1))
found = True
for i in range(len(all_subsets)):
value = list(sorted(all_subsets[i]))
if value not in dataset:
found = False
if found == True:
final_ck.append(candidate)
return ck,final_ck
def generateL(ck,min_support):
support_ck = {}
for val in Transaction1:
for val1 in ck:
value = set(val)
value1 = set(val1)
if value1.issubset(value):
if tuple(val1) not in support_ck:
support_ck[tuple(val1)] = 1
else:
support_ck[tuple(val1)] += 1
frequent_item = []
for item_set in support_ck:
if support_ck[item_set] >= min_support:
frequent_item.append(sorted(list(item_set)))
Frequent_items_value[item_set] = support_ck[item_set]
return frequent_item
# main apriori algorithm function
def apriori(L1,min_support):
k = 2;
L = []
L.append(0)
L.append(L1)
print("enter max_leaf_count") #maximum number of items in bucket i.e. bucket capacity of each node
max_leaf_count = int(input())
print("enter max_child_count") #maximum number of child you want for a node
max_child_count = int(input())
start = time.time()
while(len(L[k-1])>0):
ck,final_ck = apriori_generate(L[k-1],k) #to generate candidate itemsets
print("C%d" %(k))
print(final_ck)
h_tree = generate_hash_tree(ck,max_leaf_count,max_child_count) #to generate hashtree
if (k > 2):
while(len(L[k-1])>0):
l = generateL(final_ck, min_support)
L.append(l)
print("Frequent %d item" % (k))
print(l)
k = k + 1
ck, final_ck = apriori_generate(L[k - 1], k)
print("C%d" % (k))
print(final_ck)
break
k_subsets = generate_k_subsets(Transaction1,k) #to generate subsets of each transaction
for subset in k_subsets:
h_tree.add_support(subset) #to add support count to itemsets in hashtree
lk = []
h_tree.get_frequent_itemsets(h_tree.root,min_support,lk) #to get frequent itemsets
print("Frequent %d item" %(k))
print(lk)
L.append(lk)
k = k + 1
end = time.time()
return L,(end-start)
L_value,time_taken = apriori(values,min_support)
print("Time Taken is:")
print(time_taken)
#print("final L_value")
#print(L_value)
print("All frequent itemsets with their support count:")
print(Frequent_items_value)