-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_moses.py
139 lines (126 loc) · 4.58 KB
/
run_moses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- coding: utf-8 -*-
# author: Nianze A. TAO (SUENO Omozawa)
"""
Training, sampling, and testing on MOSES dataset.
e.g.,
$ python run_moses.py --version=smiles --samplestep=100 --datadir="./dataset/moses"
"""
import os
import json
import argparse
from pathlib import Path
import moses
import torch
import lightning as L
from torch.utils.data import DataLoader
from lightning.pytorch import loggers
from lightning.pytorch.callbacks import ModelCheckpoint
from bayesianflow_for_chem import ChemBFN
from bayesianflow_for_chem.tool import sample
from bayesianflow_for_chem.train import Model
from bayesianflow_for_chem.data import (
VOCAB_KEYS,
VOCAB_COUNT,
collate,
load_vocab,
smiles2token,
split_selfies,
CSVData,
)
cwd = Path(__file__).parent
parser = argparse.ArgumentParser()
parser.add_argument("--datadir", default="./moses", type=str, help="dataset folder")
parser.add_argument("--version", default="smiles", type=str, help="SMIlES or SELFIES")
parser.add_argument("--samplestep", default=100, type=int, help="sample steps")
args = parser.parse_args()
assert args.version.lower() in ("smiles", "selfies")
workdir = cwd / f"moses_{args.version}"
logdir = cwd / "log"
if args.version.lower() == "smiles":
pad_len = 59 # 57 + 2
num_vocab = VOCAB_COUNT
vocab_keys = VOCAB_KEYS
dataset_file = args.datadir + "/train.csv"
train_data = CSVData(dataset_file)
train_data.map(lambda x: {"token": smiles2token(".".join(x["smiles"]))})
else:
import selfies
pad_len = 57 # 55 + 2
dataset_file = args.datadir + "/trian_selfies.csv"
vocab_file = cwd / "moses_selfies_vocab.txt"
if not os.path.exists(dataset_file):
with open(args.datadir + "/train.csv", "r") as f:
smiles_data = f.readlines()[1:]
selfies_list = [selfies.encoder(i.split(",")[0]) for i in smiles_data]
if not os.path.exists(vocab_file):
vocab = []
for i in selfies_list:
vocab += split_selfies(i)
vocab = ["<pad>", "<start>", "<end>"] + list(set(vocab))
with open(vocab_file, "w") as f:
f.write("\n".join(vocab))
with open(dataset_file, "w") as f:
f.write("\n".join(["selfies"] + selfies_list))
vocab_data = load_vocab(vocab_file)
num_vocab = vocab_data["vocab_count"]
vocab_dict = vocab_data["vocab_dict"]
vocab_keys = vocab_data["vocab_keys"]
def selfies2token(s):
return torch.tensor(
[1] + [vocab_dict[i] for i in split_selfies(s)] + [2], dtype=torch.long
)
train_data = CSVData(dataset_file)
train_data.map(lambda x: {"token": selfies2token(".".join(x["selfies"]))})
model = Model(ChemBFN(num_vocab))
checkpoint_callback = ModelCheckpoint(dirpath=workdir, every_n_train_steps=1000)
logger = loggers.TensorBoardLogger(logdir, f"moses_{args.version}")
trainer = L.Trainer(
max_epochs=100, # you can run it longer
log_every_n_steps=50,
logger=logger,
accelerator="gpu",
callbacks=[checkpoint_callback],
enable_progress_bar=False,
)
if __name__ == "__main__":
os.environ["MAX_PADDING_LENGTH"] = f"{pad_len}" # set the global padding length
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64"
train_dataloader = DataLoader(
dataset=train_data,
batch_size=120, # reduce batch-size if your GPU has less than 5GB of VRAM
shuffle=True,
collate_fn=collate,
num_workers=2,
)
trainer.fit(model, train_dataloader)
model.export_model(workdir)
metrics = []
result = {
"name": "MOSES",
"version": args.version,
"sample step": args.samplestep,
"metrics": {},
"samples": {},
}
for k in [1, 2, 3]:
smiles_list = []
for _ in range(10):
smiles_list += sample(
model.model, 3000, pad_len, args.samplestep, vocab_keys=vocab_keys
)
if args.version.lower() == "selfies":
smiles_list = [selfies.decoder(i) for i in smiles_list]
result["samples"][f"run {k}"] = smiles_list
m = moses.get_all_metrics(smiles_list)
metrics.append(m)
result["metrics"][f"run {k}"] = m
mean, std = {}, {}
for key in metrics[0]:
mean[key] = torch.tensor([i[key] for i in metrics]).mean().item()
std[key] = torch.tensor([i[key] for i in metrics]).std().item()
result["metrics"]["mean"] = mean
result["metrics"]["std"] = std
with open(
cwd / f"moses_{args.version}_samplestep_{args.samplestep}_results.json", "w"
) as f:
json.dump(result, f, indent=4, separators=(",", ": "))