-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
238 lines (197 loc) · 7.29 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- coding: utf-8 -*-
# Author: Nianze A. TAO (Omozawa SUENO)
"""
Tokenise SMILES/SAFE/SELFIES/GEO2SEQ/protein-sequence strings.
"""
import os
import re
from pathlib import Path
from typing import List, Dict, Union, Optional
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.utils.data import Dataset
__filedir__ = Path(__file__).parent
SMI_REGEX_PATTERN = (
r"(\[|\]|H[e,f,g,s,o]?|"
r"L[i,v,a,r,u]|"
r"B[e,r,a,i,h,k]?|"
r"C[l,a,r,o,u,d,s,n,e,m,f]?|"
r"N[e,a,i,b,h,d,o,p]?|"
r"O[s,g]?|S[i,c,e,r,n,m,b,g]?|"
r"K[r]?|T[i,c,e,a,l,b,h,m,s]|"
r"G[a,e,d]|R[b,u,h,e,n,a,f,g]|"
r"Yb?|Z[n,r]|P[t,o,d,r,a,u,b,m]?|"
r"F[e,r,l,m]?|M[g,n,o,t,c,d]|"
r"A[l,r,s,g,u,t,c,m]|I[n,r]?|"
r"W|X[e]|E[u,r,s]|U|D[b,s,y]|"
r"b|c|n|o|s|p|"
r"\(|\)|\.|=|#|-|\+|\\|\/|:|"
r"~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"
)
SEL_REGEX_PATTERN = r"(\[[^\]]+]|\.)"
GEO_REGEX_PATTERN = (
r"(H[e,f,g,s,o]?|"
r"L[i,v,a,r,u]|"
r"B[e,r,a,i,h,k]?|"
r"C[l,a,r,o,u,d,s,n,e,m,f]?|"
r"N[e,a,i,b,h,d,o,p]?|"
r"O[s,g]?|S[i,c,e,r,n,m,b,g]?|"
r"K[r]?|T[i,c,e,a,l,b,h,m,s]|"
r"G[a,e,d]|R[b,u,h,e,n,a,f,g]|"
r"Yb?|Z[n,r]|P[t,o,d,r,a,u,b,m]?|"
r"F[e,r,l,m]?|M[g,n,o,t,c,d]|"
r"A[l,r,s,g,u,t,c,m]|I[n,r]?|"
r"W|X[e]|E[u,r,s]|U|D[b,s,y]|"
r"-|.| |[0-9])"
)
AA_REGEX_PATTERN = r"(A|B|C|D|E|F|G|H|I|K|L|M|N|P|Q|R|S|T|V|W|Y|Z|-|.)"
smi_regex = re.compile(SMI_REGEX_PATTERN)
sel_regex = re.compile(SEL_REGEX_PATTERN)
geo_regex = re.compile(GEO_REGEX_PATTERN)
aa_regex = re.compile(AA_REGEX_PATTERN)
def load_vocab(
vocab_file: Union[str, Path]
) -> Dict[str, Union[int, List[str], Dict[str, int]]]:
"""
Load vocabulary from source file.
:param vocab_file: file that contains vocabulary
:return: {"vocab_keys": vocab_keys, "vocab_count": vocab_count, "vocab_dict": vocab_dict}
"""
with open(vocab_file, "r", encoding="utf-8") as f:
lines = f.read().strip()
vocab_keys = lines.split("\n")
vocab_count = len(vocab_keys)
vocab_dict = dict(zip(vocab_keys, range(vocab_count)))
return {
"vocab_keys": vocab_keys,
"vocab_count": vocab_count,
"vocab_dict": vocab_dict,
}
_DEFUALT_VOCAB = load_vocab(__filedir__ / "vocab.txt")
VOCAB_KEYS: List[str] = _DEFUALT_VOCAB["vocab_keys"]
VOCAB_DICT: Dict[str, int] = _DEFUALT_VOCAB["vocab_dict"]
VOCAB_COUNT: int = _DEFUALT_VOCAB["vocab_count"]
AA_VOCAB_KEYS = (
VOCAB_KEYS[0:3] + "A B C D E F G H I K L M N P Q R S T V W Y Z - .".split()
)
AA_VOCAB_COUNT = len(AA_VOCAB_KEYS)
AA_VOCAB_DICT = dict(zip(AA_VOCAB_KEYS, range(AA_VOCAB_COUNT)))
GEO_VOCAB_KEYS = VOCAB_KEYS[0:3] + [" "] + VOCAB_KEYS[22:150] + [".", "-"]
GEO_VOCAB_COUNT = len(GEO_VOCAB_KEYS)
GEO_VOCAB_DICT = dict(zip(GEO_VOCAB_KEYS, range(GEO_VOCAB_COUNT)))
def smiles2vec(smiles: str) -> List[int]:
"""
SMILES tokenisation using a dataset-independent regex pattern.
:param smiles: SMILES string
:return: tokens w/o <start> and <end>
"""
tokens = [token for token in smi_regex.findall(smiles)]
return [VOCAB_DICT[token] for token in tokens]
def geo2vec(geo2seq: str) -> List[int]:
"""
Geo2Seq tokenisation using a dataset-independent regex pattern.
:param geo2seq: Geo2Seq string
:return: tokens w/o <start> and <end>
"""
tokens = [token for token in geo_regex.findall(geo2seq)]
return [GEO_VOCAB_DICT[token] for token in tokens]
def aa2vec(aa_seq: str) -> List[int]:
"""
Protein sequence tokenisation using a dataset-independent regex pattern.
:param aa_seq: protein (amino acid) sequence
:return: tokens w/o <start> and <end>
"""
tokens = [token for token in aa_regex.findall(aa_seq)]
return [AA_VOCAB_DICT[token] for token in tokens]
def split_selfies(selfies: str) -> List[str]:
"""
SELFIES tokenisation.
:param selfies: SELFIES string
:return: SELFIES vocab
"""
return [token for token in sel_regex.findall(selfies)]
def smiles2token(smiles: str) -> Tensor:
# start token: <start> = 1; end token: <esc> = 2
return torch.tensor([1] + smiles2vec(smiles) + [2], dtype=torch.long)
def geo2token(geo2seq: str) -> Tensor:
# start token: <start> = 1; end token: <esc> = 2
return torch.tensor([1] + geo2vec(geo2seq) + [2], dtype=torch.long)
def aa2token(aa_seq: str) -> Tensor:
# start token: <start> = 1; end token: <end> = 2
return torch.tensor([1] + aa2vec(aa_seq) + [2], dtype=torch.long)
def collate(batch: List) -> Dict[str, Tensor]:
"""
Padding the data in one batch into the same size.\n
Should be passed to `~torch.utils.data.DataLoader` as `DataLoader(collate_fn=collate, ...)`.
:param batch: a list of data (one batch)
:return: batched {"token": token} or {"token": token, "value": value}
"""
token = [i["token"] for i in batch]
if "MAX_PADDING_LENGTH" in os.environ:
lmax = int(os.environ["MAX_PADDING_LENGTH"])
else:
lmax = max([len(w) for w in token])
token = torch.cat(
[F.pad(i, (0, lmax - len(i)), value=0)[None, :] for i in token], 0
)
out_dict = {"token": token}
if "value" in batch[0]:
out_dict["value"] = torch.cat([i["value"][None, :] for i in batch], 0)
if "mask" in batch[0]:
mask = [i["mask"] for i in batch]
out_dict["mask"] = torch.cat(
[F.pad(i, (0, lmax - len(i)), value=0)[None, :] for i in mask], 0
)
return out_dict
class CSVData(Dataset):
def __init__(self, file: Union[str, Path]):
"""
Define dataset stored in CSV file.
:param file: dataset file name <file>
:type file: str | pathlib.Path
"""
super().__init__()
with open(file, "r") as db:
self.data = db.readlines()
self.header_idx_dict: Dict[str, List[int]] = {}
for key, i in enumerate(self.data[0].replace("\n", "").split(",")):
if i in self.header_idx_dict:
self.header_idx_dict[i].append(key)
else:
self.header_idx_dict[i] = [key]
self.mapping = lambda x: x
def __len__(self) -> int:
return len(self.data) - 1
def __getitem__(self, idx: Union[int, Tensor]) -> Dict[str, Tensor]:
if torch.is_tensor(idx):
idx = idx.tolist()
# valid `idx` should start from 1 instead of 0
data: List[str] = self.data[idx + 1].replace("\n", "").split(",")
data_dict: Dict[str, List[str]] = {}
for key in self.header_idx_dict:
data_dict[key] = [data[i] for i in self.header_idx_dict[key]]
return self.mapping(data_dict)
def map(self, mapping: Callable[[Dict[str, List[str]]], Any]) -> None:
"""
Pass a customised mapping function to transform the data entities to tensors.
e.g.
```python
import torch
from bayesianflow_for_chem.data import smiles2token, CSVData
def encode(x):
return {
"token": smiles2token(".".join(x["smiles"])),
"value": torch.tensor([float(i) if i != "" else torch.inf for i in x["value"]]),
}
dataset = CSVData(...)
dataset.map(encode)
```
:param mapping: customised mapping function
:type mapping: callable
:return:
:rtype: None
"""
self.mapping = mapping
if __name__ == "__main__":
...