-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotters.py
138 lines (119 loc) · 5.34 KB
/
plotters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import torch
import matplotlib.pyplot as plt
from torch.distributions import MultivariateNormal
fat_alpha = 0.8
thin_alpha = 0.5
n_samples_to_plot = 500
def plot_losses(losses_storage, nth_distribution, distribution, n_epsilons, images_folder):
slice_of_interest = losses_storage[nth_distribution]
# average over repeats
mean_over_repeats = np.mean(slice_of_interest, axis=2)
fig, ax = plt.subplots(1)
for i, v in enumerate(mean_over_repeats):
ax.plot(v, label=n_epsilons[i])
plt.title(f"Train losses of {distribution}")
ax.set_xlabel("epoch")
ax.set_ylabel("loss")
plt.legend(title="Epsilon dimensions")
plt.savefig("/".join([images_folder, "losses_" + distribution]))
plt.show()
plt.close()
def plot_performance(performance_storage, nth_distribution, distribution, n_epsilons, images_folder):
slice_of_interest = performance_storage[nth_distribution]
mean_over_repeats = np.mean(slice_of_interest, axis=2)
fig, ax = plt.subplots(figsize=(7, 7))
ax.plot(n_epsilons, mean_over_repeats[:, 0])
ax.xaxis.set_ticks(n_epsilons)
ax.set_xlabel("auxilliary dimensions")
ax.set_ylabel("Negative log likelihood")
ax.set_title(f"Performance of model {distribution}", fontsize=16)
plt.savefig("/".join([images_folder, "performance_" + distribution]))
plt.show()
plt.close()
pass
def show_forward(dataset, net):
with torch.no_grad():
_, forward = net(dataset)
forward = forward.detach().numpy()
if forward.shape[1] == 2:
fig, ax = plt.subplots(figsize=(7, 7))
ax.scatter(forward[:, 0], forward[:, 1], alpha=fat_alpha, s=1)
ax.set_title("Forward")
ax.set_ylim((-4, 4))
ax.set_xlim((-4, 4))
else:
n_features = forward.shape[1]
fig, ax = plt.subplots(n_features, n_features, figsize=(7, 7))
for i in range(n_features):
for j in range(n_features):
ax[i, j].scatter(forward[:, i], forward[:, j], alpha=thin_alpha, s=1)
plt.title("Forward")
plt.setp(ax, xlim=(-4, 4), ylim=(-4, 4))
plt.show()
plt.close()
def show_backward(device, net):
data = MultivariateNormal(loc=torch.zeros(net.dimension_of_flows).to(device),
covariance_matrix=torch.diag(torch.ones(net.dimension_of_flows).to(device))).sample((500,))
with torch.no_grad():
X = net.inverse(data.to(device)).detach().cpu().numpy()
if net.data_dimensions == 2:
fig, ax = plt.subplots(figsize=(7, 7))
ax.scatter(X[:, 0], X[:, 1], alpha=fat_alpha, s=1)
ax.set_title("Backward")
ax.set_ylim((-4, 4))
ax.set_xlim((-4, 4))
else:
n_features = net.data_dimensions
fig, ax = plt.subplots(n_features, n_features, figsize=(7, 7))
for i in range(n_features):
for j in range(n_features):
ax[i, j].scatter(X[:, i], X[:, j], alpha=thin_alpha, s=1)
plt.setp(ax, xlim=(-4, 4), ylim=(-4, 4))
plt.show()
plt.close()
def plot_and_store_backward_pass(device, net, dataname):
if dataname.endswith("MNIST"):
plot_mnist_backward(device, net)
elif dataname == "CIFAR10":
plot_cifar10_backward(device, net)
else:
show_backward(device, net)
def plot_mnist_backward(device, net):
data = MultivariateNormal(loc=torch.zeros(net.dimension_of_flows).to(device),
covariance_matrix=torch.diag(torch.ones(net.dimension_of_flows).to(device))).sample((4,))
with torch.no_grad():
fig, ax = plt.subplots(2, 2, figsize=(5, 5))
ax = ax.flatten()
backward = net.inverse(data.to(device)).detach().cpu().numpy()[:, :784]
for i in range(4):
ax[i].imshow(np.reshape(backward[i], (28, 28)), cmap='Greys')
plt.show()
plt.close(fig)
def plot_cifar10_backward(device, net):
data = MultivariateNormal(loc=torch.zeros(net.dimension_of_flows).to(device),
covariance_matrix=torch.diag(torch.ones(net.dimension_of_flows).to(device))).sample((4,))
with torch.no_grad():
backward = net.inverse(data.to(device)).detach().cpu().numpy()[:, :3 * 32 * 32]
backward = np.swapaxes(np.swapaxes(np.reshape(backward, (4, 3, 32, 32)) * 2 + 0.5, 1, 3), 1, 2)
backward = np.clip(backward, 0, 1)
fig, ax = plt.subplots(2, 2, figsize=(5, 5))
ax = ax.flatten()
for i in range(4):
ax[i].imshow(backward[i])
plt.show()
plt.close(fig)
def mnist_noised(noisy, natural):
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(np.reshape(natural.detach().numpy()[0, :784], (28, 28)), cmap='Greys')
ax[1].imshow(np.reshape(noisy.detach().numpy()[0, :784], (28, 28)), cmap='Greys')
plt.show()
# def plot_mappings(flow, data, current_image_folder, modelname, dist):
# if dist == "MNIST":
# plotname = "/".join([current_image_folder, "plot_" + modelname])
# plot_backward(flow, plotname)
# else:
# forwardname = "/".join([current_image_folder, "forward_" + modelname])
# show_forward(data, flow, forwardname)
# backwardname = "/".join([current_image_folder, "backward_" + modelname])
# show_backward(flow, backwardname)