-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathdssm.py
54 lines (41 loc) · 1.72 KB
/
dssm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from sklearn.model_selection import train_test_split
from parser.webqsp import WebQSP
from parser.lc_quad import LC_Qaud
from lsa.dssm import DSSM
from common.preprocessing.preprocessor import Preprocessor
from common.graph.graph import Graph
from linker.jerrl import Jerrl
def qapairs_to_triple(qapairs):
return [{"id": item.id, "question": item.question.text, "query": item.sparql.raw_query, "uris": item.sparql.uris}
for item in qapairs]
jerrl = Jerrl()
ds = LC_Qaud()
kb = ds.parser.kb
ds.load()
ds.parse()
# ds_train, ds_test, _, _ = train_test_split(ds.qapairs, [1] * len(ds.qapairs), test_size=0.2)
ds_train = ds.qapairs[:4000]
ds_test = ds.qapairs[4000:]
ds_train = qapairs_to_triple(ds_train)
ds_test = qapairs_to_triple(ds_test)
model = DSSM(max_steps=10)
# questions, queries, ids = Preprocessor.qapair_to_hash(ds_train)
# model.train([questions, queries])
# questions, queries, ids = Preprocessor.qapair_to_hash(ds_test)
# model.test([questions, queries])
new_ds_test = []
for item in ds_test:
ask_query = "ASK " in item["query"]
count_query = "COUNT(" in item["query"]
sort_query = "order by" in item["query"].lower()
entities, ontologies = [u for u in item["uris"] if u.is_entity()], \
[u for u in item["uris"] if u.is_ontology()]
graph = Graph(kb)
graph.find_minimal_subgraph(entities, ontologies, ask_query, sort_query)
where = graph.to_where_statement()
if len(where) > 1:
for w in where:
new_ds_test.append({"id": item["id"], "question": item["question"], "query": " ".join(w[1]),
"uris": item["uris"]})
questions, sparqls = Preprocessor.qapair_to_hash(new_ds_test)
model.similarity(questions, sparqls)