-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
79 lines (61 loc) · 2.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
from keras.layers import Dense
from keras.losses import categorical_crossentropy
from keras.models import Sequential
from keras.optimizers import Adadelta
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.svm import LinearSVC, SVC
from label_to_vector import get_XY
# 線形回帰
def train_lr(X_train2, Y_train2, X_test2, Y_test2):
model = LogisticRegression(solver='newton-cg', max_iter=10000, multi_class='ovr')
model.fit(X=X_train2, y=Y_train2)
print_score(X_train2, Y_train2, X_test2, Y_test2, model)
# 線形SVM
def train_lsvc(X_train2, Y_train2, X_test, Y_test):
model = LinearSVC(loss='hinge', C=1)
model.fit(X=X_train2, y=Y_train2)
print_score(X_train2, Y_train2, X_test, Y_test, model)
# 非線形SVM
def train_svc(X_train2, Y_train2, X_test, Y_test):
model = SVC(kernel="rbf", gamma=5, C=0.001)
model.fit(X=X_train2, y=Y_train2)
print_score(X_train2, Y_train2, X_test, Y_test, model)
# ExtraTrees
def train_et(X_train2, Y_train2, X_test, Y_test):
model = ExtraTreesClassifier(n_estimators=100)
model.fit(X_train2, Y_train2)
print_score(X_train2, Y_train2, X_test, Y_test, model)
def print_score(X_train2, Y_train2, X_test2, Y_test2, model):
print("score: ", model.score(X=X_train2, y=Y_train2), accuracy_score(Y_test2, model.predict(X_test2)))
# 多層パーセプトロン
def train_dl(X_train, Y_train, X_test, Y_test):
enc = OneHotEncoder(handle_unknown='ignore')
enc.fit(np.array(Y_train).reshape(-1, 1))
X_train2 = np.array(X_train)
Y_train2 = enc.transform(np.array(Y_train).reshape(-1, 1)).toarray()
assert len(X_train2) == len(Y_train2)
X_test2 = np.array(X_test)
Y_test2 = enc.transform(np.array(Y_test).reshape(-1, 1)).toarray()
assert len(X_test2) == len(Y_test2)
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(X_train2.shape[1],)))
model.add(Dense(64, activation='relu'))
model.add(Dense(Y_train2.shape[1], activation='softmax'))
# model.summary()
model.compile(loss=categorical_crossentropy, optimizer=Adadelta(), metrics=['accuracy'])
model.fit(X_train2, Y_train2, batch_size=64, epochs=100, verbose=1, validation_split=0.7)
score = model.evaluate(X_test2, Y_test2, verbose=0)
# print('Test loss:', score[0])
print('Test accuracy', score[1])
if __name__ == "__main__":
X_train, Y_train, X_test, Y_test = get_XY()
train_lr(X_train, Y_train, X_test, Y_test)
train_lsvc(X_train, Y_train, X_test, Y_test)
train_svc(X_train, Y_train, X_test, Y_test)
train_et(X_train, Y_train, X_test, Y_test)
train_dl(X_train, Y_train, X_test, Y_test)
pass