-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilsNetwork.py
176 lines (156 loc) · 6.33 KB
/
utilsNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -*- coding: utf-8 -*-
"""
Created on Mon May 4 14:24:04 2020
@author: Kosta
"""
import pandas as pd
from numpy import random
def createTable(var_names, var_values, probs, print_flag=None):
"""
Creates a pandas DataFrame with conditional probabilities.
Parameters
----------
var_names : list of variable names that have effect on variable for which you make table.
var_values : list of tuples, where each tuple corresponds to the variable in var_names.
Elements in tuple represent the order of encoding of values for variable.
Index of the tuple in the var_values list is the level of the binary encoded variable.
probs : list of probabilities. They will be placed in the DataFrame in the same order.
Length of prabs should be 2^len(var_names)
print_flag : string that represents the variable for which the table is created.
Default is None which does not print anything.
Returns
-------
table : pandas DataFrame object
"""
if len(var_names) != len(var_values):
raise ValueError("'var_names' and 'var_values' should have same length")
if 2**len(var_names) != len(probs):
raise ValueError("length of probs should be 2^len(var_names)")
table = pd.DataFrame(columns=var_names+['probs'])
table['probs'] = probs
# create values for variables (1 for plus, 0 for minus)
n = len(var_names)
for level,values in enumerate(var_values):
j = 0 # iterates over rows
value_ind = 0
while(j != 2**n):
delta_j = 2**(n-level-1)
table.loc[j:j+delta_j,var_names[level]] = values[value_ind]
value_ind = 1-value_ind # swtich between zeros and ones
j+=delta_j
if print_flag is not None:
print('---'*7)
print("Table for P({}|".format(print_flag),end='')
print(",".join(str(e) for e in var_names)+'):')
print(table.to_string(index=False))
return table
def observeInNetwork(network,nodes,values):
"""
Observes the network (probability tables) in order to remove rows from tables
where the observed variables are not consistent with observed values.
Parameters
----------
network: dictionary where values are DataFrame tables
nodes: list of names of observed nodes
values : List of correspodnding observed values
Returns
-------
observed_network
"""
observed_network = {}
for name,table in network.items():
for node,value in zip(nodes,values):
if node in table.columns: # if observed variable exist in table
table = table[table[node] == value] # keep rows where observed variable has value value
observed_network[name]=table
return observed_network
def cutIrrelevant(network, hidden, interogative, observed):
"""
Cuts the irrelevant nodes in the network, by removing leaf nodes if they are in hidden nodes.
If the node is removed, the function is again called recursively.
Parameters
----------
network: dictionary where values are DataFrame tables
hidden: list of names of hidden nodes
interrogative : List with name of interrogative node
observed: List of names of observed nodes
Returns
-------
irrelevant: list of irrelevant nodes
"""
irrelevant = []
all_nodes = hidden + interogative + observed
parents=[]
for node in all_nodes:
parents += list(network[node].columns)[:-1]
for node in all_nodes:
if (node not in parents) and (node in hidden):
hidden.remove(node)
del network[node]
print('Node {} is irrelevant, it is removed.'.format(node))
irrelevant.append(node)
irrelevant += cutIrrelevant(network, hidden, interogative, observed)
return irrelevant
def sampleNode(prob):
"""
Samples the 0 with given probability, otherwise returns 1.
Parameters
-----
prob: probability for negative value
Returns
-----
Samples value (0 or 1)
"""
p = random.random()
if prob > p:
return 0 # because table is conditional probability for negative outcome
else:
return 1
def normalize(outcome1,outcome2):
"""
Normalizes outcomes so that they sum up to 1.
"""
alpha = outcome1 + outcome2
return outcome1/alpha, outcome2/alpha
def getTableProduct(table1,table2,observed,observed_values):
"""
Get the product of 2 tables, by multiplying where variable values overlap.
Also, delete rows which are not consisent with observed values, and after that
delete the columns with observed variables.
Parameters
-----
table1: pandas DataFrame
table2: pandas DataFrame
observed: list of names of observed variables
observed_values: list of corresponding observed values
Returns
-----
product: pandas DataFrame
"""
if (table1 is None):
return table2
all_columns = list((set(table1.columns) | set(table2.columns)) - set(["probs"]))
shared_columns = list((set(table1.columns) & set(table2.columns)) - set(["probs"]))
product = pd.DataFrame(columns=all_columns)
probs = []
k = 0
for i in range(len(table1)):
for j in range(len(table2)):
if sum(table1[shared_columns].iloc[i] == table2[shared_columns].iloc[j]) == len(shared_columns):
prob = table1["probs"].iloc[i] * table2["probs"].iloc[j]
probs.append(prob)
values = []
for name in all_columns:
if name in table1.columns:
values.append(table1[name].iloc[i])
else:
values.append(table2[name].iloc[j])
product.loc[k] = values
k += 1
product["probs"] = probs
# the product table is now created but it may contain some variables that are observed, so we need to handle that
for var in list(product.columns)[:-1]:
if var in observed: # if variable is observed variable
product = product[product[var] == observed_values[observed.index(var)]]
del product[var]
return product