-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgeneric.py
258 lines (210 loc) · 8.58 KB
/
generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
Implementation of wrappers for generic types.
"""
import copy
import random
from base import BaseData
# TODO(@Azamat7): Implement Int methods
class Int(BaseData):
def __init__(self, low, high, _value=None):
self.low = low
self.high = high
self._value = _value
def crossover(self, other):
bit_self = bin(self.generate())[2:]
bit_other = bin(other.generate())[2:]
# new length for the offspring
child_len = (len(bit_self) + len(bit_other)) // 2
child, i, j = "", 0, 0
for _ in range(child_len):
prob = random.random()
si = min(len(bit_self) - 1, int(i + 0.5))
oi = min(len(bit_other) - 1, int(j + 0.5))
bit = bit_self[si] if prob < 0.5 else bit_other[oi]
child += bit
i += len(bit_self) / child_len # increment self bits
j += len(bit_other) / child_len # increment other bits
child = int("0b" + child, 2)
if child <= self.low or child >= self.high:
child = (self.low + self.high) // 2
return self.__class__(self.low, self.high, child)
def mutation(self, mutator_id=0):
if mutator_id == 0:
bit_value = bin(self.generate())[2:]
mutated = ""
for i in range(len(bit_value)):
prob = random.random()
bit = str(random.randint(0, 1)) if prob > 0.9 else bit_value[i]
mutated += bit
return self.__class__(self.low, self.high, int("0b" + mutated, 2))
return self
def generate(self):
if not self._value:
self._value = random.randint(self.low, self.high)
return self._value
# TODO(@Azamat7): Implement Float methods (see Int for reference)
class Float(BaseData):
def __init__(self, low, high, _value=None):
self.low = low
self.high = high
self._value = _value
def crossover(self, other):
return self.__class__(self.low, self.high,
(self.generate() + other.generate()) / 2)
def mutation(self, mutator_id=0):
if mutator_id == 0:
bit_value = str(self.generate())
dot = [p for p, c in enumerate(bit_value) if c == "."][0]
mutated = bit_value[:dot + 1]
for i in range(dot + 1, len(bit_value)):
prob = random.random()
bit = str(random.randint(0, 9)) if prob > 0.9 else bit_value[i]
mutated += bit
return self.__class__(self.low, self.high, float(mutated))
return mutator_id
def generate(self):
if not self._value:
self._value = random.uniform(self.low, self.high)
return self._value
# TODO(@Azamat7): Implement String methods (see Int for reference)
class String(BaseData):
def __init__(self, low, high, chars, _value=None):
self.low = low # should be at least 1
self.high = high
self.chars = chars
self._value = _value
def crossover(self, other):
parent1 = self.generate()
parent2 = other.generate()
# new length for the offspring
child_len = (len(parent1) + len(parent2)) // 2
child, i, j = "", 0, 0
for _ in range(child_len):
prob = random.random()
si = min(len(parent1) - 1, int(i + 0.5))
oi = min(len(parent2) - 1, int(j + 0.5))
bit = parent1[si] if prob < 0.5 else parent2[oi]
child += bit
i += len(parent1) / child_len # increment self bits
j += len(parent2) / child_len # increment other bits
return self.__class__(self.low, self.high, self.chars, child)
def mutation(self, mutator_id=0):
if mutator_id == 0:
original = self.generate()
mutated = ""
for i in range(len(original)):
prob = random.random()
if prob > 0.9:
char = str(self.chars[random.randint(0, len(self.chars) - 1)])
else:
char = original[i]
mutated += char
return self.__class__(self.low, self.high, self.chars, mutated)
return self
def generate(self):
if not self._value:
length = random.randint(self.low, self.high)
value = ""
for _ in range(length):
index = random.randint(0, len(self.chars) - 1)
value += self.chars[index]
self._value = value
return self._value
# TODO(@shynar88): Implement List methods (see Int for reference)
class List(BaseData):
def __init__(self, low, high, elem, _value=None):
self.low = low
self.high = high
self.elem = elem
self._value = _value
def crossover(self, other):
shortest_len = min(len(self.generate()), len(other.generate()))
crossover_point = random.randint(0, shortest_len - 1)
rand_int = random.randint(0, 1)
if rand_int == 1:
child = (self._value[:crossover_point] +
other._value[crossover_point:])
else:
child = (self._value[crossover_point:] +
other._value[:crossover_point])
return self.__class__(self.low, self.high, self.elem, child)
def mutation(self, mutator_id=0):
original = self.generate()
mutated = original[:]
if mutator_id == 0:
for i in range(len(mutated)):
prob = random.random()
elem = self.elem.generate() if prob > 0.9 else mutated[i]
elem = copy.deepcopy(self.elem).generate() if prob > 0.9 else mutated[i]
mutated[i] = elem
return self.__class__(self.low, self.high, self.elem, mutated)
elif mutator_id == 1:
fraction = max(int(len(mutated) * 0.05), 1)
for i in range(fraction):
left_index = max(0, random.randint(0, len(mutated) - 2))
right_index = max(0, random.randint(0, len(mutated) - 1))
if left_index == right_index:
right_index += 1
t = mutated[left_index]
mutated[left_index] = mutated[right_index]
mutated[right_index] = t
return self.__class__(self.low, self.high, self.elem, mutated)
else:
return self
def generate(self):
if not self._value:
length = random.randint(self.low, self.high)
value = []
for _ in range(length):
elem = copy.deepcopy(self.elem).generate()
value.append(elem)
self._value = value
return self._value
# TODO(@shynar88): Implement Tuple methods (see Int for reference)
class Tuple(BaseData):
def __init__(self, low, high, elem, _value=None):
self.low = low
self.high = high
self.elem = elem
self._value = _value
def crossover(self, other):
self_list = List(self.low, self.high, self.elem, list(self._value))
other_list = List(other.low, other.high. other.elem, list(other._value))
child = tuple(self_list.crossover(other_list)._value)
return self.__class__(self.low, self.high, self.elem, child)
def mutation(self, mutator_id=0):
if mutator_id == 0:
self_list = List(self.low, self.high, self.elem, list(self._value))
mutated = tuple(self_list.mutation()._value)
return self.__class__(self.low, self.high, self.elem, mutated)
return self
def generate(self):
if not self._value:
self_list = List(self.low, self.high, self.elem, list(self._value))
self._value = tuple(self_list.generate())
return self._value
class Dict(BaseData):
"""
User provides what keys can be in the dictionary and their types.
"""
def __init__(self, key_dict=None):
self._value = None
self.key_dict = key_dict if key_dict else {}
def crossover(self, other):
new_dict = self.__class__()
for k in self.key_dict.keys():
new_dict.key_dict[k] = self._value[k].crossover(other._value[k])
return new_dict
def mutation(self, mutator_id=0):
if mutator_id == 0:
new_dict = copy.deepcopy(self)
for k in self._value.keys():
new_dict.key_dict[k] = new_dict.key_dict[k].mutation()
return new_dict
return self
def generate(self):
if not self._value:
self._value = dict()
for k in self.key_dict.keys():
self._value[k] = self.key_dict[k].generate()
return self._value