-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathminMaxHeap.cpp
185 lines (150 loc) · 4.29 KB
/
minMaxHeap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include <iostream>
#include <vector>
#include <algorithm>
#include <stdexcept>
using namespace std;
// Data structure to store a max-heap node
struct PriorityQueue
{
private:
// vector to store heap elements
vector<int> A;
// return parent of `A[i]`
// don't call this function if `i` is already a root node
int PARENT(int i) {
return (i - 1) / 2;
}
// return left child of `A[i]`
int LEFT(int i) {
return (2*i + 1);
}
// return right child of `A[i]`
int RIGHT(int i) {
return (2*i + 2);
}
// Recursive heapify-down algorithm.
// The node at index `i` and its two direct children
// violates the heap property
void heapify_down(int i)
{
// get left and right child of node at index `i`
int left = LEFT(i);
int right = RIGHT(i);
int largest = i;
// compare `A[i]` with its left and right child
// and find the largest value
if (left < size() && A[left] > A[i]) {
largest = left;
}
if (right < size() && A[right] > A[largest]) {
largest = right;
}
// swap with a child having greater value and
// call heapify-down on the child
if (largest != i)
{
swap(A[i], A[largest]);
heapify_down(largest);
}
}
// Recursive heapify-up algorithm
void heapify_up(int i)
{
// check if the node at index `i` and its parent violate the heap property
if (i && A[PARENT(i)] < A[i])
{
// swap the two if heap property is violated
swap(A[i], A[PARENT(i)]);
// call heapify-up on the parent
heapify_up(PARENT(i));
}
}
public:
// return size of the heap
unsigned int size() {
return A.size();
}
// Function to check if the heap is empty or not
bool empty() {
return size() == 0;
}
// insert key into the heap
void push(int key)
{
// insert a new element at the end of the vector
A.push_back(key);
// get element index and call heapify-up procedure
int index = size() - 1;
heapify_up(index);
}
// Function to remove an element with the highest priority (present at the root)
void pop()
{
try {
// if the heap has no elements, throw an exception
if (size() == 0)
{
throw out_of_range("Vector<X>::at() : "
"index is out of range(Heap underflow)");
}
// replace the root of the heap with the last element
// of the vector
A[0] = A.back();
A.pop_back();
// call heapify-down on the root node
heapify_down(0);
}
// catch and print the exception
catch (const out_of_range &oor) {
cout << endl << oor.what();
}
}
// Function to return an element with the highest priority (present at the root)
int top()
{
try {
// if the heap has no elements, throw an exception
if (size() == 0)
{
throw out_of_range("Vector<X>::at() : "
"index is out of range(Heap underflow)");
}
// otherwise, return the top (first) element
return A.at(0); // or return A[0];
}
// catch and print the exception
catch (const out_of_range &oor) {
cout << endl << oor.what();
}
}
};
// Max Heap implementation in C++
int main()
{
PriorityQueue pq;
// Note: The element's value decides priority
pq.push(3);
pq.push(2);
pq.push(15);
cout << "Size is " << pq.size() << endl;
cout << pq.top() << " ";
pq.pop();
cout << pq.top() << " ";
pq.pop();
pq.push(5);
pq.push(4);
pq.push(45);
cout << endl << "Size is " << pq.size() << endl;
cout << pq.top() << " ";
pq.pop();
cout << pq.top() << " ";
pq.pop();
cout << pq.top() << " ";
pq.pop();
cout << pq.top() << " ";
pq.pop();
cout << endl << boolalpha << pq.empty();
pq.top(); // top operation on an empty heap
pq.pop(); // pop operation on an empty heap
return 0;
}