Skip to content

Latest commit

 

History

History
138 lines (119 loc) · 4.9 KB

File metadata and controls

138 lines (119 loc) · 4.9 KB

ND111 - Data Science II - Nanodegree Foundations

Tags

  • Author : AH Uyekita
  • Dedication : 10 hours/week (suggested)
  • Start : 14/12/2018
  • End (Planned): 28/12/2018
  • Title : Data Science II - Foundations Nanodegree Program

Related Courses

Bookdown and Projects


Objectives

I want to finish this course in two weeks. It includes the Optional videos and chapters.

Syllabus

  • Chapter 01 - Welcome
    • Lesson 01 - Instructions
    • Lesson 02 - Tips
  • Chapter 02 - SQL for Data Analysis
    • Lesson 01 - Basic SQL
    • Lesson 02 - SQL Joins
    • Lesson 03 - SQL Aggregations
    • Lesson 04 - (Optional) SQL Subqueries & Temporary Tables (Advanced)
    • Lesson 05 - (Optional) SQL Data Cleaning (Advanced)
    • Project 01 - Query a Digital Music Store Database
  • Chapter 03 - Data Wrangling
    • Lesson 01 - Introduction to Data Wrangling
    • Lesson 02 - Gathering
    • Lesson 03 - Assessing Data
    • Lesson 04 - Cleaning Data
    • Project 02 - Wrangle and Analyze Data
  • Chapter 04 - Advanced Statistics
    • Lesson 01 - Descriptive Statistics - Part 1
    • Lesson 02 - Descriptive Statistics - Part 2
    • Lesson 03 - Admissions Case Study
    • Lesson 04 - Probability
    • Lesson 05 - Binomial Distribution
    • Lesson 06 - Conditional Probability
    • Lesson 07 - Bayes Rule
    • Lesson 08 - Python Probability Practice
    • Lesson 09 - Normal Distribution Theory
    • Lesson 10 - Sampling Distributions and the Central Limit Theorem
    • Lesson 11 - Confidence Intervals
    • Lesson 12 - Hypothesis Testing
    • Lesson 13 - Case Study: A/B Tests
    • Lesson 14 - Regression
    • Lesson 15 - Multiple Linear Regression
    • Lesson 16 - Logistic Regression
    • Project 03 - Analyze A/B Test Results
  • Chapter 05 - Intro to Machine Learning
    • Lesson 01 - Welcome to Machine Learning
    • Lesson 02 - Naive Bayes
    • Lesson 03 - SVM
    • Lesson 04 - Decision Trees
    • Lesson 05 - Choose Your Own Algorithm
    • Lesson 06 - Datasets and Questions
    • Lesson 07 - Regressions
    • Lesson 08 - Outliers
    • Lesson 09 - Clustering
    • Lesson 10 - Feature Scaling
    • Lesson 11 - Text Learning
    • Lesson 12 - Feature Selection
    • Lesson 13 - PCA
    • Lesson 14 - Validation
    • Lesson 15 - Evaluation Metrics
    • Lesson 16 - Tying It All Together
    • Project 04 - Identify Fraud from Enron Email
  • Chapter 06 - (Optional) Data Visualization
    • Lesson 01 - Introduction to Data Visualization
    • Lesson 02 - Design
    • Lesson 03 - Data Visualization in Tableau
    • Lesson 04 - Making Dashboard & Stories in Tableau

Repository Structure

This is the structure of this repository, each course's chapters (or parts) will be stored in different folders.

ND111_data_science_foundation_02
|
+--  01-Chapter_01
|           |
|           +--  README.md                       # General information
|
+--  02-Chapter_02
|           |
|           +--  README.md                       # General information
|           +--  00-Project_01                   # Project 01
|           +--  01-Lesson_01                    # Files from Lesson 01
|           |        +--  README.md              # Notes from Lesson 01 from Chapter 02
|           +--  02-Lesson_02                    # Files from Lesson 02
|           |        +--  README.md              # Notes from Lesson 02 from Chapter 02
|           .
|
+--  03-Chapter_03
|           |
|           +--  README.md                       # General information
|           +--  00-Project_02                   # Project 02
|           +--  01-Lesson_01                    # Files from Lesson 01
|           |        +--  README.md              # Notes from Lesson 01 from Chapter 02
|           +--  02-Lesson_02                    # Files from Lesson 02
|           |        +--  README.md              # Notes from Lesson 02 from Chapter 02
|           .

Best practice