-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEOS.py
1211 lines (1008 loc) · 58.5 KB
/
EOS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#overall functions
def scenario(seconds_gran = 20, number_of_requests_0 = 1000, NORAD_ids = [38755, 40053], weather_real = False, simplify = True,
schedule_start = [2021,7,21,9,40],
hours_horizon = 8,
max_off_nadir_angle = 30, #degrees
height_satellite = 694, #km
rotation_speed = 30/12, #degrees per second #per https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-6-7
cam_resolution = 1, #m^2 per pixel
capacity_limit = 1000000, #in mega byte
satellite_swath = 3600,
map_generation=True): #compute maps?
# NORAD_ids = [38012, 39019]
# seconds_gran =10
# number_of_requests_0 =30
# weather_real = False
## entire setup ##
import datetime
#from satellite_tle import fetch_tle_from_celestrak
import requests
TLEs = list()
for i in range(0, len(NORAD_ids)):
#tle = requests.get('https://www.celestrak.com/satcat/tle.php?CATNR={}'.format(NORAD_ids[i]), #old version
tle = requests.get('https://www.celestrak.com/NORAD/elements/gp.php?CATNR={}&FORMAT=TLE'.format(NORAD_ids[i]), #new version
verify=True,
timeout=20)
TLE = tle.text.split('\r\n')
TLEs.append(TLE)
#NORAD_ids = [38012, 39019, 38755, 40053]
################### SCHEDULE INPUT ##################
#starting time for horizon
import random
random.seed(42)
#time_stochastic = random.uniform(0,24)
start_schedule = datetime.datetime(schedule_start[0],schedule_start[1],schedule_start[2],schedule_start[3],schedule_start[4]) #- datetime.timedelta(hours=int(time_stochastic))
#start_schedule = datetime.datetime(2020,5,8,12,50)
#datetime.datetime.utcnow() - datetime.timedelta(days=total_days+day) - datetime.timedelta(hours = 18)
#hours ahead to schedule
hours_ahead = hours_horizon
print(start_schedule, 'to', start_schedule + datetime.timedelta(hours=int(hours_ahead)))
#Note, Dates always use Universal Time, NOT local time
#granularity of scheduling (discretization),
#i.e. time segmentation
#number of satellite
number_of_satellites = len(NORAD_ids)
#compute maps?
map_generation=True
####################################################
################## SATELLITE INPUT #################
#TLE of satellite 1
# =============================================================================
# name_1 = "pleiades 1A";
# line1_1 = "1 38012U 11076F 19303.06642174 -.00000056 00000-0 -23405-5 0 9997";
# line2_1 = "2 38012 98.1883 15.9149 0001494 90.8918 269.2452 14.58560404418937"
#
# #TLE of satellite 2
# name_2 = "pleiades 1B";
# line1_2 = "1 39019U 12068A 19303.10054518 -.00000046 00000-0 -91078-7 0 9993";
# line2_2 = "2 39019 98.1870 15.9140 0001220 88.0086 272.1258 14.58558050367792"
#
# #TLE of satellite 3
# name_3 = "SPOT 6";
# line1_3 = "1 38755U 12047A 19303.08272605 -.00000060 00000-0 -30989-5 0 9990";
# line2_3 = "2 38755 98.1980 8.4889 0000909 81.1977 278.9329 14.58563161380015"
#
# #TLE of satellite 4
# name_4 = "SPOT 7";
# line1_4 = "1 40053U 14034A 19303.11654248 .00001178 00000-0 26330-3 0 9995";
# line2_4 = "2 40053 98.2135 8.3331 0001054 68.4868 291.6410 14.58559748283956"
# =============================================================================
#SATELLITE SPECS assumed to be the same
#no energy constraint - ease computation
#satellite cameras reachability
#max_off_nadir_angle = 30 #degrees
#height_satellite = 694 #km
#rotation_speed = 30/12 #degrees per second #per https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-6-7
#cam_resolution = 1 #m^2 per pixel
#capacity_limit = 1000000 #in mega byte
#satellite_swath = 3600
########################################################
#allowed_weather = 50
#succesful_weather = 10
############# DATA GENERATION INPUT ####################
#number of requests from customers through # days!
number_of_requests = 0
#request already in database
#number_of_requests_0 = 0
########################################################
#packages
import ephem
from math import degrees, floor
import folium
import pandas as pd
import numpy as np
np.random.seed(42)
#import timeit
#data_time_start = timeit.default_timer()
################### DATA GENERATION ####################
#### schedule relative data ###
from EOSpython.schedule_rel_criteria import schedule_criteria
day=1
total_days = 1
df = schedule_criteria(number_of_requests, total_days, number_of_requests_0, satellite_swath)
#df.info()
avg_pri_df = [[list(np.mean(df[df["priority"] == j], axis = 0))[i] for i in [3,4,5,6,7,8,11]] for j in list(range(1,8))]
#np_avg_pri_df = np.array(avg_pri_df)
col_names_avg = list(df.columns[[4,5,6,7,8,9,12]])
df_avg_pri = pd.DataFrame(
{"measures": col_names_avg,
"pri 1": avg_pri_df[0],
"pri 2": avg_pri_df[1],
"pri 3": avg_pri_df[2],
"pri 4": avg_pri_df[3],
"pri 5": avg_pri_df[4],
"pri 6": avg_pri_df[5],
"pri 7": avg_pri_df[6],
}
)
df_avg_pri.iloc[:,:4]
df_avg_pri.iloc[:,4:]
#### prelimenary data analysis begins - COLLECT VALID DATA
#changing waiting time accordingly
DF_i = df[(df["day"] <= day) & (df["acquired"] == 0)]
pd.options.mode.chained_assignment = None
added_wait = list()
for i in range(0,DF_i.shape[0]):
added_wait.append(random.randint(1,14)) #age distribution randomly uniform 1 to 14!!!!!!
DF_i["waiting time"] = day - DF_i["day"] + np.array(added_wait)
#stereo requests into multiple requests
#DF_i["stereo"]>1
#data_time_end_generation = data_time_start - timeit.default_timer()
##Start map generation
if map_generation == True:
m = folium.Map(location=[20, 0], zoom_start=2) #tiles= 'Cartodb Positron'
from EOSpython.plot_requests import plot_requests, plot_requests2
plot_requests(m, df = DF_i, name = "request location", radius = 5)
#file is called all_requests.html
### satellite path computation
sat_names = list()
tle_rec = list()
for i in range(0, len(TLEs)):
sat_names.append(TLEs[i][0])
tle_rec.append(ephem.readtle(TLEs[i][0], TLEs[i][1], TLEs[i][2]))
increment = datetime.timedelta(seconds=seconds_gran)
number_of_acq_points = floor((hours_ahead*60*60)/seconds_gran) #convert hours to seconds
time_slots = list()
location_slots = list()
for i in range(0, len(NORAD_ids)):
location_slots.append(list())
for i in range(0,number_of_acq_points):
time = start_schedule + (i)*increment
time_slots.append(time)
for k in range(0, number_of_satellites):
tle_rec[k].compute(time)
location_slots[k].append([degrees(tle_rec[k].sublat), degrees(tle_rec[k].sublong)])
### DATA COMPUTATION (satellite relative)
from EOSpython.distance_matrix import distance_matrix
distance = distance_matrix(location_slots, DF_i, max_off_nadir_angle, height_satellite, number_of_satellites)
print("number of reachable attempts:", np.sum(~np.isnan(distance)))
#data_time_end_path = data_time_start - timeit.default_timer()
if weather_real == True:
weather = True
generate_weather = False
else:
weather = False
generate_weather = True
from EOSpython.construct_performance_df import construct_performance_df
performance_df = construct_performance_df(DF_i, seconds_gran, location_slots, time_slots,
distance, height_satellite, hours_ahead,
weather = weather, generate_weather = generate_weather)
print("number of attempts within thresholds:", performance_df.shape[0])
print("number of requests", len(np.unique(performance_df['ID'])))
#plot satellite path
if map_generation == True:
sat = folium.FeatureGroup(name = "Satellite path")
colors = list(["royalblue", "black", "darkolivegreen", "green"])
for k in range(0,len(location_slots)):
for i in range(0,len(location_slots[k])):
popup_text = "Satellite: {}<br> time: {}<br> possible acquisitions: <br>{}"
popup_text = popup_text.format(sat_names[k],
time_slots[i].strftime('%H:%M:%S-%m/%d/%Y'),
list(np.where(performance_df["time"] == time_slots[i])[0]))
sat.add_child(folium.CircleMarker(location=location_slots[k][i], radius = 4, opacity = 1-(i/(1.3*number_of_acq_points)),popup=folium.Popup(popup_text), color = colors[k]))
m.add_child(sat)
#m.add_child(folium.LayerControl())
m.save("sat_path.html")
if map_generation == True:
plot_requests2(m, df = performance_df, name = "request location")
#file is called all_requests.html
#data_time_end_preprocessing = data_time_start - timeit.default_timer()
#performance_df.info()
###################################################################
########################### LPP SETUP #############################
###################################################################
from EOSpython.LPP_data_setup import LPP_data_multi
LPP = LPP_data_multi(performance_df, number_of_acq_points, time_slots, location_slots,
height_satellite, rotation_speed, seconds_gran,
capacity_limit, cam_resolution, simplify)
#LPP.LHS
#LPP.RHS
#LPP.eLHS
#LPP.eRHS
#data_time_end_LPP = data_time_start - timeit.default_timer()
#start = timeit.default_timer()
##############################################################
##### Stochastic multicriteria acceptability analysis ########
##############################################################
#1# create different weights
#2# get electre iii score for all sets of w
#2# get topsis score for all sets of w
# take average for all sets of scores
#3# insert score in LPP an find solution
#3# analyse relationship between weight input and solution
# how often is each alternative chosen
# when alternative is chosen what is the average weight distribution?
# based on certain weight dis input - what is closest schedule(s)
scenario.LPP = LPP
scenario.df = DF_i
scenario.pf_df = LPP.performance_df
scenario.m = m
return(EOSscenario)
def solve(x_data, scoring_method=2, solution_method="DAG",
criteria_weights = np.array([0,0,0,0,0,0,1,0]),
threshold_parameters= np.array([[0,0,1000],
[0,0,40],
[0,0,40],
[0,0,15],
[0,0,4],
[0,0,20000],
[0,0,1],
[0,0,1]]),
alpha = 1):
#import ephem
#from math import degrees, floor
#import folium
import pandas as pd
import numpy as np
import time
#performance_df = x_data.pf_df
#performance_df.info()
#performance_df.columns[[7,11,12,13,15,16,17,18,19]]
#### Call generated data frames
#performance_df.to_csv(r'C:\Users\allex\Desktop\SPECIALE\data\10reach.csv', index = ";", header=True)
#read diff data
#reach10_data = pd.read_csv(r'C:\Users\allex\Desktop\SPECIALE\data\10reach.csv', sep = ",")
#performance_df = reach10_data.iloc[:,1:]
#naming convention
LPP = x_data.LPP
DF_i = x_data.df
performance_df = x_data.pf_df
#IDENTIFY CRITERIA TO INCLUDE IN SCORING PROCEDURE
dat = np.array(performance_df.iloc[:,[7,11,12,13,15,17,18,19]].transpose()) #which criteria is important in performance df
#NOTE FOR PAPER 3 - 16th col is not included as criteria
#from fuzzy_topsis import fuzzytopsis
from EOSpython.easy_funcs import topsis
from EOSpython.electre_parallel import parallelectre
from cvxopt import matrix
from cvxopt import glpk
#glpk.options["show_progress"] = True
#glpk.options["maxiters"] = 1000
binVars = range(dat.shape[1])
###### setup test environment #######
#scoring_method = 0 #0 = airbus, 1 = TOPSIS, 2 = ELECTRE, 3 = naive scoring method
SMAA_version = 0 #0 = no usage, 1 = version 1 , 1 = version 2
MC_runs = 1
#(area, distance, angle, sun elevation, cloud cover, pri, type, price, age, uncertainty)
# =============================================================================
# q = np.array([1000, 10, 2, 1, 0, 0, 0, 0, 1, 0]) #indifference
# p = np.array([1500, 25, 4, 5, 5, 0.8, 0.5, 3000, 5, 0.2]) #preferred
# #v = np.array([20000, 100, 10, 10, 15, 0.3, 2, 40000, 6, 0.3]) #veto
# v = np.array([100000, 250, 40, 70, 60, 1.2, 0.8, 100000, 10, 0.8]) #veto
# =============================================================================
#####################################
if SMAA_version == 2:
#create weights
MonteCarlo_runss = MC_runs
weights = np.zeros((dat.shape[0], MonteCarlo_runss))
i=0
for k in list(np.array(list(range(1,1000, int(1000/(MonteCarlo_runss)))))/1000):
weights[:,i] = np.random.dirichlet(np.ones(dat.shape[0])*float(k),size=1)
i=i+1
#np.std(weights, axis = 0)
if SMAA_version == 1:
MonteCarlo_runss = 1
if SMAA_version == 0:
MonteCarlo_runss = 1
weights = np.zeros((dat.shape[0], MonteCarlo_runss))
weights[:,0] = np.array([1]*dat.shape[0])/dat.shape[0] #equal
#w_other = (1-0.5)/(dat.shape[0]-1)
#customer type 0.5
#weights[:,0] = np.array([w_other,w_other,w_other,w_other, 0.5, w_other,w_other,w_other])
#uncertainty 0.5
#weights[:,0] = np.array([w_other,w_other,w_other,w_other, w_other, w_other,w_other,0.5])
#scenarios
#(area, angle, sun elevation, cloud cover, pri, price, age, uncertainty)
#weights[:,0] = np.array([0,0,0,0,0,0,0,1,0,0]) #profit
#weights[:,0] = np.array([0,0,0,0,0,0,0,0,1,0]) #lead time
#weights[:,0] = np.array([0,0,0,0,1,0,0,0,0,0]) #cloud cover
#weights[:,0] = np.array([0.25, 0, 0, 0, 0.25, 0.25, 0.25, 0, 0, 0])
if type(threshold_parameters) is not np.ndarray:
q = np.array([0, 2, 2, 0, 0,0,0,0])
p = np.array([50,5,5,5,1, 1000, 0, 2])
v = np.array([1000, 40, 40, 15, 2, 10000, 13, 5])
# =============================================================================
# The airbus mimiced parameters
# q = np.array([0,0, 2, 2.424, 4.021, 0,0,0,1,0])
# p = np.array([1500,0,4,5,5,0.8, 0.5, 3000, 5, 2])
# v = np.array([100000, 0, 40, 70, 15.319, 0.812, 0.704, 100000, 10, 5])
# =============================================================================
else:
q = threshold_parameters[:,0]
p = threshold_parameters[:,1]
v = threshold_parameters[:,2]
if type(criteria_weights) is not np.ndarray:
weights[:,0] = np.array([1]*dat.shape[0])/dat.shape[0] #equal
else:
weights[:,0] = criteria_weights
#weights[:,0] = np.array([0.0005, 0, 0.0004, 0.0002, 0.2885727, 0.13339262, 0.87803468, 0, 0.0005, 0])
objective_np = np.array([1,0,1,0,0,0,1,1,1]) #note for paper 3 - remove customer critiera 6th
schedules = np.zeros((performance_df.shape[0], MonteCarlo_runss))
for i in range(0, MonteCarlo_runss):
if SMAA_version == 1:
MonteCarlo_runs_v1 = MC_runs
score_v1 = np.zeros((performance_df.shape[0], MonteCarlo_runs_v1))
#len_x = len(dat[4,:])
for h in range(0, MonteCarlo_runs_v1):
dat[3,:] = dat[3,:] + np.multiply(np.random.uniform(-1,1,1)*20, dat[8,:]) #len_x instead of 1
dat[3,:][dat[3,:] > 100] = 100
dat[3,:][dat[3,:] < 0] = 0
#global score with topsis or electre
if (scoring_method == 0):
#priority
priority_airbus = [100000000,1000000,10000,6600,3300,120,1]
weather_airbus = (100-dat[3,:])/100
s_1cell = 3600
score_airbus = np.zeros((dat.shape[1]))
for s in range(0,dat.shape[1]):
score_airbus[s] = priority_airbus[int(dat[4,s])-1] * (1+ 4*weather_airbus[s] + 2*(dat[0,s]/s_1cell))
score = score_airbus
if (scoring_method == 1):
FT = topsis(dat, objective_np, weights[:,i])
score = FT.score
print('scored!')
#note topsis can score a request with 0, if it is the worst global alternative..
score = score + 0.000001
if (scoring_method == 2):
FT = parallelectre(dat, q, p, v, objective_np, weights[:,i])
score = np.mean(FT.score, axis = 1)
print('scored!')
if (scoring_method == 3):
objective = objective_np
w_n = np.zeros((dat.shape))
score = np.zeros((dat.shape[1]))
for j in range(0, dat.shape[0]):
w_n[j,:] = dat[j,:]/max(dat[j,:])
if objective[j] == 0:
w_n[j,:] = 1 - w_n[j,:]
for j in range(0,dat.shape[1]):
score[j] = w_n[:,j] @ weights[:,0]
print('scored!')
#save v1 scoring
score_v1[:,h] = score
score = np.mean(score_v1, axis = 1)
else:
#global score with topsis, electre, naive
#priority modification for airbus score
if (scoring_method == 1):
FT = topsis(dat, objective_np, weights[:,i])
score = FT.score
#note topsis can score a request with 0, if it is the worst global alternative..
score = score + 0.000001
if (scoring_method == 2):
FT = parallelectre(dat, p, q, v, objective_np, weights[:,i])
score = np.mean(FT.score, axis = 1)
if (scoring_method == 3):
objective = objective_np
w_n = np.zeros((dat.shape))
score = np.zeros((dat.shape[1]))
for j in range(0, dat.shape[0]):
w_n[j,:] = dat[j,:]/max(dat[j,:])
if objective[j] == 0:
w_n[j,:] = 1 - w_n[j,:]
for j in range(0,dat.shape[1]):
score[j] = w_n[:,j] @ weights[:,i]
#political valuation
score = score**alpha
print('scoring complete')
if solution_method == "gurobi":
import gurobipy as grb
opt_model = grb.Model(name="BLP_Model")
#LPP solution
f = -score
set_I = range(1, len(f)+1)
# if x is Binary
x_vars = {(i): opt_model.addVar(vtype=grb.GRB.BINARY,
name="x_{0}".format(i)) for i in set_I}
# <= constraints
set_J = range(1, len(LPP.RHS)+1)
a = {(j,i) : np.array(matrix(LPP.LHS))[j-1,i-1] for j in set_J for i in set_I}
b = {(j): LPP.RHS[j-1] for j in set_J}
c = {(j,i) : LPP.eLHS[j-1,i-1] for j in range(1,LPP.eLHS.shape[0]) for i in set_I}
d = {(j): LPP.eRHS[j-1] for j in range(1,LPP.eLHS.shape[0])}
#LPP.eLHS
#LPP.eRHS
# <= constraints
constraints1 = {j :
opt_model.addConstr(
lhs=grb.quicksum(a[j,i] * x_vars[i] for i in set_I),
sense=grb.GRB.LESS_EQUAL,
rhs=b[j],
name="constraint1_{0}".format(j))
for j in set_J}
# == constraints
constraints2 = {j :
opt_model.addConstr(
lhs=grb.quicksum(c[j,i] * x_vars[i] for i in set_I),
sense=grb.GRB.EQUAL,
rhs=b[j],
name="constraint2_{0}".format(j))
for j in range(1,LPP.eLHS.shape[0])}
#OBJECTIVE
f = {(i): -score[i-1] for i in set_I}
objective = grb.quicksum(x_vars[i] * f[i] for i in set_I)
# for minimization
opt_model.ModelSense = grb.GRB.MINIMIZE
opt_model.setObjective(objective)
#solve
opt_model.optimize()
#assign solution
opt_df = pd.DataFrame.from_dict(x_vars, orient="index", columns = ["variable_object"])
opt_df.reset_index(inplace=True)
opt_df["solution_value"] = opt_df["variable_object"].apply(lambda item: item.X)
#save x
schedules[:,i] = np.array(opt_df["solution_value"])
opt_model
print(opt_model.solve_details.time, opt_model.solve_details.status)
if solution_method == "PuLP":
import pulp as plp
opt_model = plp.LpProblem(name="BLP_Model")
#LPP solution
f = -score
set_I = range(1, len(f)+1)
x_vars = {(i): plp.LpVariable(cat=plp.LpBinary, name="x_{0}_1".format(i)) for i in set_I}
# <= constraints
set_J = range(1, len(LPP.RHS)+1)
a = {(j,i) : np.array(matrix(LPP.LHS))[j-1,i-1] for j in set_J for i in set_I}
b = {(j): LPP.RHS[j-1] for j in set_J}
c = {(j,i) : LPP.eLHS[j-1,i-1] for j in range(1,LPP.eLHS.shape[0]) for i in set_I}
d = {(j): LPP.eRHS[j-1] for j in range(1,LPP.eLHS.shape[0])}
#LPP.eLHS
#LPP.eRHS
constraints1 = {j : opt_model.addConstraint(
plp.LpConstraint(
e=plp.lpSum(a[j,i] * x_vars[i] for i in set_I),
sense=plp.LpConstraintLE,
rhs=b[j],
name="constraint1_{0}".format(j)))
for j in set_J}
# == constraints
constraints2 = {j : opt_model.addConstraint(
plp.LpConstraint(
e=plp.lpSum(c[j,i] * x_vars[i] for i in set_I),
sense=plp.LpConstraintEQ,
rhs=d[j],
name="constraint2_{0}".format(j)))
for j in range(1,LPP.eLHS.shape[0])}
#OBJECTIVE
f = {(i): -score[i-1] for i in set_I}
objective = plp.lpSum(x_vars[i] * f[i] for i in set_I)
# for minimization
opt_model.sense = plp.LpMinimize
opt_model.setObjective(objective)
# solving with CBC
opt_model.solve()
#assign solution
import pandas as pd
opt_df = pd.DataFrame.from_dict(x_vars, orient="index", columns = ["variable_object"])
opt_df.reset_index(inplace=True)
opt_df["solution_value"] = opt_df["variable_object"].apply(lambda item: item.varValue)
#save x
schedules[:,i] = np.array(opt_df["solution_value"])
print(plp.LpStatus[opt_model.status])
if solution_method == "cplex":
import docplex.mp.model as cpx
opt_model = cpx.Model(name="BLP_Model")
#LPP solution
f = -score
set_I = range(1, len(f)+1)
x_vars = {(i,0): opt_model.binary_var(name="x_{0}_0".format(i)) for i in set_I}
# <= constraints
set_J = range(1, len(LPP.RHS)+1)
a = {(j,i) : np.array(matrix(LPP.LHS))[j-1,i-1] for j in set_J for i in set_I}
b = {(j): LPP.RHS[j-1] for j in set_J}
c = {(j,i) : LPP.eLHS[j-1,i-1] for j in range(1,LPP.eLHS.shape[0]) for i in set_I}
d = {(j): LPP.eRHS[j-1] for j in range(1,LPP.eLHS.shape[0])}
#LPP.eLHS
#LPP.eRHS
constraints1 = {j :
opt_model.add_constraint(
ct=opt_model.sum(a[j,i] * x_vars[i,0] for i in set_I) <= b[j],
ctname="constraint1_{0}".format(j)) for j in set_J}
# == constraints
constraints2 = {j :
opt_model.add_constraint(
ct=opt_model.sum(c[j,i] * x_vars[i,0] for i in set_I) == d[j],
ctname="constraint2_{0}".format(j)) for j in range(1,LPP.eLHS.shape[0])}
#OBJECTIVE
f = {(i): -score[i-1] for i in set_I}
objective = opt_model.sum(x_vars[i,0] * f[i]
for i in set_I)
#solve with cplex cloud
opt_model.time_limit = 60 #1e75
API_cplexcloud = 'api_a60ae489-9091-4c39-b7e2-90135566c662'
cplex_cloud_url = 'https://api-oaas.docloud.ibmcloud.com/job_manager/rest/v1/'
opt_model.solve(url=cplex_cloud_url, key=API_cplexcloud)
#assign solution
opt_df = pd.DataFrame.from_dict(x_vars, orient="index", columns = ["variable_object"])
opt_df.index = pd.MultiIndex.from_tuples(opt_df.index, names=["column_i", "column_j"])
opt_df.reset_index(inplace=True)
opt_df["solution_value"] = opt_df["variable_object"].apply(lambda item: item.solution_value)
#save x
schedules[:,i] = np.array(opt_df["solution_value"])
print(opt_model.solve_details.time, opt_model.solve_details.status)
if solution_method == "GLPK":
#LPP solution
f = -score
start_time = time.time()
output_cvxopt = glpk.ilp(c = matrix(f), G = LPP.LHS, h = matrix(LPP.RHS), # A = matrix(LPP.eLHS), b = matrix(LPP.eRHS),
I = set(binVars), B = set(binVars))
x = np.array(output_cvxopt[1])
end_time = time.time() - start_time
schedules[:,i] = np.squeeze(x)
print(f@x, end_time)
#global airbus score
#GS = np.dot(np.squeeze(x), score_airbus)
#f@x
#np.sum(x)/len(x)
if solution_method[0:3] == "DAG":
#note, currently all attempts are denoted by a digit - we do another abstraction
#to represent each choice as the edge between two attempts, that is each attempt
#is a node, while all the feasible rotations between attempts are the edges of
#the graph. All edges are represented by the inverted infeasibility matrix.
#NOW SORT the NODES after satellite and time:
#performance_df.info()
##TOPOLOOGICAL SORTING - relative to satellite and time
new_index_list = list(range(0,len(performance_df)))
for i in range(0,len(performance_df)-1):
if not (performance_df.iloc[i]["satellite"] == performance_df.iloc[i+1]["satellite"] and performance_df.iloc[i]["time"] <= performance_df.iloc[i+1]["time"]):
#something is maybe wrong with topological sorting
if (performance_df.iloc[i]["time"] >= performance_df.iloc[i+1]["time"] and performance_df.iloc[i]["satellite"] == performance_df.iloc[i+1]["satellite"]):
#interchange index i and i+1
new_index_list[i+1] = i
new_index_list[i] = i+1
#check for changes needed
numberofsatellites = 2
check_1 = any(np.diff(new_index_list) == 0)
check_2 = np.sum(np.diff(np.array(performance_df['satellite']))!=0) != numberofsatellites-1 #number of satellites
#check_3 = any(np.array(np.diff(np.array(performance_df['time'], dtype = 'timedelta64[ns]')), dtype = 'int64')<0)
if check_1 or check_2: # or check_3:
#if changes are required modify performance_df, score, F, etc. - unlikely as this sorting should have been done prior.
print('topological sorting error with', numberofsatellites, 'satellites')
#create edges matrix (no loops)
edges0 = LPP.F==0
edges = np.triu(edges0, 1) #remove loops and directed (cannot go backwards)
#Algorithm should not include interdependent sets, that is, attempts representing the same request
#inter_attempts = LPP.B
#stereo and strips interdependencies
#stereo
stereo = LPP.stereo
#strips
all_strip_reqs_id = performance_df['ID'].iloc[np.where(performance_df['strips']>=1)]
unique_strip_reqs = np.unique(all_strip_reqs_id)
strips = np.zeros((len(unique_strip_reqs), len(performance_df)))
strips_num_acq = list()
for ii in range(0,len(unique_strip_reqs)):
index_i = all_strip_reqs_id.iloc[np.where(all_strip_reqs_id == unique_strip_reqs[ii])[0]].index
strips[ii, index_i] = 1
strips_num_acq.append(max(performance_df[['stereo','strips']].iloc[index_i[0]]+np.array([1,0])))
depth_edges_Search = solution_method[3:]
if depth_edges_Search == '':
depth_edges_Search = 25
else:
depth_edges_Search = int(depth_edges_Search)
start_time = time.time()
#remove function
def REMOVE(path, I, edges, stereo, strips, strips_num_acq,score):
path[I] = 0
if any(path) == False:
return(path)
else:
number_before_I = int(np.sum(path[0:I]))
if number_before_I > 0:
from_a = np.where(path)[0][number_before_I-1] #the number before variable starts from 1
else:
from_a = 0
number_after_I = int(np.sum(path[I:]))
if number_after_I > 0:
from_b = np.where(path)[0][number_before_I]
else:
return(path)
search_range = [from_a, from_b]
into=np.where(edges[search_range[0],:])[0]
feasible_nodes = into[np.where(edges[into, search_range[1]])[0]]
feasible_nodes = np.setdiff1d(feasible_nodes, I)
if len(feasible_nodes) == 0:
return(path)
else:
longest_path_tempp = [[] for ii in range(0,len(feasible_nodes))]
weight_of_path_tempp = np.zeros((len(feasible_nodes)))
for iii in range(0,len(feasible_nodes)):
path_temp = np.copy(path)
path_temp[feasible_nodes[iii]] = 1
if all(strips @ path_temp <= strips_num_acq) and all(stereo @ path_temp == 0) :
longest_path_tempp[iii] = path_temp
weight_of_path_tempp[iii] = score[feasible_nodes[iii]]
if np.max(weight_of_path_tempp) == 0:
return(path)
else:
return(longest_path_tempp[np.argmax(weight_of_path_tempp)])
#insert node in path function
def INSERT(x, I, keep, edges, stereo, strips, strips_num_acq,score):
x[I] = 1
if any(strips @ x > strips_num_acq):
#remove least contributing interdep node
interdep = np.where(strips[np.where(strips[:,I])[0],:])[1]
interdep_i_acq = np.intersect1d(interdep,np.where(x)[0])
if keep != []:
interdep_i_acq = np.setdiff1d(interdep_i_acq,keep)
interdep = np.delete(interdep_i_acq,np.where(interdep_i_acq==I)[0]) #single
x = REMOVE(x, interdep[np.argmin(score[interdep])], edges, stereo, strips, strips_num_acq, score)
if any(stereo @ x != 0):
stereo_idx = np.where(stereo[np.where(stereo @ x != 0)[0], :]==1)[1] #single
x = REMOVE(x, stereo_idx[np.argmin(score[stereo_idx])], edges, stereo, strips, strips_num_acq, score)
r1 = np.squeeze(edges[np.where(x[0:I])[0],I])
r2 = np.squeeze(edges[I,np.where(x[I:])[0] + I])
feasible_maneuver = np.concatenate((r1.reshape((r1.size)), r2.reshape((r2.size))))
if np.sum(feasible_maneuver == False) > 1: #because I is infeasible with it self
infeas = np.where(x)[0][np.where((np.where(x)[0] != I)*1 + ~feasible_maneuver.astype(bool) == 2)[0]]
if len(infeas) < 2:
x = REMOVE(x, infeas[0], edges, stereo, strips, strips_num_acq, score)
else:
infeas_lims = infeas[[0,len(infeas)-1]]
x[infeas] = 0
for infs in infeas_lims:
x = REMOVE(x, infs, edges, stereo, strips, strips_num_acq, score)
return(x)
#EXAMPLE from paper:
# edges = np.array([[0,1,1,1,1,1,1,1,1,1],
# [0,0,1,1,1,1,1,1,1,1],
# [0,0,0,0,1,1,1,1,1,1],
# [0,0,0,0,1,1,1,1,1,1],
# [0,0,0,0,0,1,1,1,1,1],
# [0,0,0,0,0,0,1,1,1,1],
# [0,0,0,0,0,0,0,1,1,1],
# [0,0,0,0,0,0,0,0,0,1],
# [0,0,0,0,0,0,0,0,0,1],
# [0,0,0,0,0,0,0,0,0,0]])
# strips =np.array([[1,0,0,0,0,1,0,0,0,0],
# [0,1,1,0,0,0,1,1,0,0],
# [0,0,0,1,1,0,0,0,1,1]])
# strips_num_acq = np.array([1,2,2])
# stereo = np.array([[0,0,0,1,0,0,0,0,-1,0],
# [0,0,0,0,1,0,0,0,0,-1]])
# score = np.array([1,1,2,3,2,2,2,2,2,3])
#x = [0, 0, 1, 0, 0, 1, 1, 0, 1, 0]
#I=3
#INSERT(path, I, edges, stereo, strips, strips_num_acq)
##EXTENDED LONGEST PATH ALGORITHM
longest_path_to_node = [[] for i in range(0,len(edges))]
weight_of_path = np.zeros((len(edges)))
for i in range(0, len(edges)):
incomming_neighbours = list(np.where(edges[0:i,i])[0])
#if zero longest path is just it se lf.
if len(incomming_neighbours) == 0:
if all(stereo[:,i] == 0): #non-stereo
#longest_path_to_node[i].append(-1)
longest_path_to_node[i].append(i)
weight_of_path[i] = score[i]
else:
weight_of_path[i] = 0
else:
##initiate loop to find largest path not including an interdependent node
sort_neighbour = np.argsort(weight_of_path[incomming_neighbours])[::-1]
vertice_which = np.array(incomming_neighbours)[sort_neighbour]
#naive shorting of incoming neighbours - parameter to how deep it should investigate
depth = min(depth_edges_Search,len(incomming_neighbours))
longest_path_temp = [[] for jj in range(0,depth)]
weight_of_path_temp = np.zeros((depth))
for j in range(0,depth):
path = np.concatenate((longest_path_to_node[vertice_which[j]], [i]))
x = np.zeros((len(edges)))
x[path.astype(int)] = 1
if all(strips @ x<= strips_num_acq):
if all(stereo @ x == 0):
if j == 0:
longest_path_to_node[i] = np.where(x)[0]
weight_of_path[i] = score @ x
break
else:
longest_path_temp[j] = x
weight_of_path_temp[j] = score @ x
else:
#ADD stereo or path is not possible
stereo_set = np.where(stereo[np.where(stereo[:,i] == -1)[0],:] == 1)[1]
if len(stereo_set) == 0:
weight_of_path_temp[j] = 0
continue
else:
#print(i,j,x,path,stereo_set)
x_stereo = INSERT(x, stereo_set[0], i, edges, stereo, strips, strips_num_acq,score)
longest_path_temp[j] = x_stereo
weight_of_path_temp[j] = score @ x_stereo
else:
#remove least contributing interdep node
if all(stereo[:,i] == 0): #non-stereo
np.intersect1d(np.where(strips[np.where(strips @ x > strips_num_acq)[0],:])[1], np.where(x[:i])[0])
interdep_i = np.where(strips[np.where(strips[:,i])[0],:])[1]
interdep_i_acq = np.intersect1d(interdep_i,np.where(x)[0])
interdep_i_acq = np.setdiff1d(interdep_i_acq, i)
min_interdep_i = np.argmin(score[interdep_i_acq])
min_ilegal_node = interdep_i_acq[min_interdep_i]
longest_path_temp[j] = REMOVE(x, min_ilegal_node, edges, stereo, strips, strips_num_acq,score)
else:
ind_stereo = np.where(stereo[np.where(stereo[:,i]==-1)[0],:i] == 1)[1]
if len(ind_stereo) == 0:
#legal path to this one is not feasible
weight_of_path_temp[j] = 0
continue
else:
#we now know that another set of stereo attempts are performed of the same stereo request as node i is trying to acquire
#so that pair has to be terminated and the not-included should be included:
#np.where(performance_df['index'][i] == performance_df['index'])[0]
stereo_pairs = np.intersect1d(ind_stereo, path)
if len(stereo_pairs) == 0: #the other pair is not included
int_stereo_set = np.intersect1d(np.where(strips[np.where(strips @ x > strips_num_acq)[0],:])[1], np.where(x[:i])[0])
x[int_stereo_set] = 0 #investigated after adding the others
##
if len(ind_stereo) > 1: #mistake if this can happen
print(ind_stereo)
##
new_stereo = int(ind_stereo)
#x_temp2 = np.zeros(len(x))
#length_temp2 = np.zeros(len(ind_stereo))
#for i_ss in range(0,len(ind_stereo)):
x = INSERT(x, new_stereo, i, edges, stereo, strips, strips_num_acq, score)
#length_temp2 = score @ x_temp2
#x = x_temp2[:,length_temp2]
for i_s in int_stereo_set:
x = REMOVE(x, i_s, edges, stereo, strips, strips_num_acq, score) #investigates the first of the prior removed stereo attempt
longest_path_temp[j] = x
else:
min_stereo = stereo_pairs[np.argmin(score[stereo_pairs])] #modified
longest_path_temp[j] = REMOVE(x, min_stereo, edges, stereo, strips, strips_num_acq,score)
weight_of_path_temp[j] = longest_path_temp[j] @ score
if len(longest_path_to_node[i]) == 0:
longest_path_to_node[i] = np.where(longest_path_temp[np.argmax(weight_of_path_temp)])[0]
weight_of_path[i] = np.max(weight_of_path_temp)
x = np.zeros((len(edges)))
x[longest_path_to_node[np.argmax(weight_of_path)]] = 1
#x = longest_path_to_node
end_time = time.time() - start_time
#schedules[:,i] = np.squeeze(x)
print('acq, objvalue, runtime:', np.sum(x), -np.max(weight_of_path), end_time)
# ##EXTENDED LONGEST PATH ALGORITHM
# longest_path_to_node = [[] for i in range(0,len(performance_df))]
# weight_of_path = np.zeros((len(performance_df)))
#
#
# for i in range(0, len(performance_df)):
# #i+=1
# incomming_neighbours = list(np.where(edges[max(0,i-depth_edges_Search):i,i])[0])
# #if zero longest path is just it se lf.
# if len(incomming_neighbours) == 0:
# #longest_path_to_node[i].append(-1)
# longest_path_to_node[i].append(i)
# weight_of_path[i] = score[i]
# else:
# #find all interdependent attempts relative to current node
# which_id = np.where(inter_attempts[:,i]==1)[0]
# inter_i = np.where(inter_attempts[which_id,:])[1]
# #relative to strips and stereo
# allowed_stereo = set(np.where(stereo[np.where(stereo[:,i] == -1)[0],:i])[0])
# strips_interdependent_i = np.where(strips[:,i]==1)[0]
#
#
# ##initiate loop to find largest path not including an interdependent node
# max_path_weight = 0
# max_path = list()
# for j in range(0,min(depth_independent_Search,len(incomming_neighbours))):
# max_neighbour = np.argmax(weight_of_path[incomming_neighbours])
# vertice_which = incomming_neighbours[max_neighbour]
# #check if vertice is already included (interdependent other node)
# s1 = set(longest_path_to_node[vertice_which])
# s2 = set(inter_i)
# intersection = s1.intersection(s2)
# if j == 0 and len(intersection) == 0:
# max_path = list(s1)
# break
# #check if any interdependent can be omitted due to the stereo and strip allowing constraints?
# # Note, intersection is the similarity between interdependent attempts and already included relative to the current investigated attempt.
# # If we remove attempts from intersection, they are removed from interdependent list, and thereby added to the final list checked for max path.
#
# #stereo - just remove from intersection if they are allowed by stereo constraint.
# intersection = intersection - allowed_stereo
#
# #strips
# if len(strips_interdependent_i) > 0:
# strips_interdependent = set(np.where(strips[strips_interdependent_i,:])[1])
# strips_allowed = list(intersection.intersection(strips_interdependent))
# #all strips are allowed, if number of strips does not exceed the allowed constrained number.
# if len(strips_allowed) < strips_num_acq[int(strips_interdependent_i)]:
# intersection = intersection - set(strips_allowed)
# #locate least benefitting attempt in strips (interdepedent) - remove that! (note, neglects possible profit from alternative where old attempt where removed)
# else:
# min_strip_i = np.argmin(weight_of_path[strips_allowed])
# min_strip = strips_allowed[min_strip_i]
# #remove the least contributing strip from intersec
# intersection = intersection - (set(strips_allowed) - set([min_strip]))
# s1 = s1 - set([min_strip])
# #As a rule of thumb the intersection will at most include one illegal node.
# #we therefore search if there is any legal nodes that connects the same pair
# #of nodes as the intersection, if so we include that
# #if len(s1) > 1 and len(intersection)==1:
# # s1.add(i)
# # s1_check = np.array(list(s1))
# # argsort = np.argsort(np.abs(s1_check-np.array(list(intersection))))
# # idx_min = np.where(np.isin(argsort,[1,2]))
# # s1_id = s1_check[idx_min]
# # s1.remove(i)
# # #find other connecting edge:
# # connecting0 = np.where(1*edges[s1_id[0],s1_id[0]:(s1_id[1]+1)] + 1*edges[s1_id[0]:(s1_id[1]+1), s1_id[1]] == 2)[0]
# # connecting = np.array(range(s1_id[0], s1_id[1]+1))[connecting0]
# #