forked from MITHaystack/srt-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmotors.py
1124 lines (1020 loc) · 37.3 KB
/
motors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""motors.py
Module for Controlling Different Motor Types over Serial
"""
import serial
from abc import ABC, abstractmethod
from time import sleep
from math import cos, acos, pi, sqrt, floor
class Motor(ABC):
"""Abstract Class for All Motors Types
Attributes
----------
port : str
Serial Port Identifier String for Communicating with the Motor
baudrate : int
Baudrate for serial connection
az_limits : (float, float)
Tuple of Lower and Upper Azimuth Limits
el_limits : (float, float)
Tuple of Lower and Upper Elevation Limits
serial : serial.Serial
Serial Object for Communicating with the Motor
See Also
--------
<https://pyserial.readthedocs.io/en/latest/pyserial_api.html>
"""
def __init__(self, port, baudrate, az_limits, el_limits):
"""Constructor for the Abstract Motor Class
Parameters
----------
port : str
Serial Port Identifier String for Communicating with the Motor
az_limits : (float, float)
Tuple of Lower and Upper Azimuth Limits
el_limits : (float, float)
Tuple of Lower and Upper Elevation Limits
"""
self.port = port
self.baudrate = baudrate
self.az_limits = az_limits
self.el_limits = el_limits
self.serial = None
@abstractmethod
def point(self, az, el):
"""Abstract Method Prototype for Pointing a Motor at an AzEl Coordinate
Parameters
----------
az : float
Azimuth Coordinate Value to Point At
el : float
Elevation Coordinate Value to Point At
Returns
-------
(float, float)
Azimuth and Elevation Coordinate as a Tuple of Floats
"""
pass
@abstractmethod
def status(self):
"""Abstract Method Prototype for Getting a Motor's Current AzEl Position
Returns
-------
(float, float)
Azimuth and Elevation Coordinate as a Tuple of Floats
"""
pass
def __del__(self):
"""Override of Motor Delete Method to Close Serial Port if Necessary
Returns
-------
None
"""
if self.serial is not None and self.serial.is_open:
self.serial.close()
class NoMotor(Motor):
"""
Class for Simulating a Motor or Using a Stationary Telescope
"""
def __init__(self, port, baudrate, az_limits, el_limits):
"""
Initializer for Rot2Motor
Parameters
----------
port : str
NOT USED - Needed For Abstract Motor Initializer
baudrate : int
Baudrate for serial connection
az_limits : (float, float)
Tuple of Lower and Upper Azimuth Limits (if Stationary, both should be the same value)
el_limits : (float, float)
Tuple of Lower and Upper Elevation Limits (if Stationary, both should be the same value)
"""
super().__init__(port, baudrate, az_limits, el_limits)
self.position = (az_limits[0], el_limits[0])
def point(self, az, el):
"""Changes the Unchanging Position of the Stationary / Simulated Motor
Parameters
----------
az : float
Azimuth Coordinate to Point At
el : float
Elevation Coordinate to Point At
Returns
-------
None
"""
self.position = (az, el)
def status(self):
"""Returns the Unchanging Position of the Stationary / Simulated Motor
Returns
-------
(float, float)
Current Azimuth and Elevation Coordinate as a Tuple of Floats
"""
return self.position
class Rot2Motor(Motor):
"""Class for Controlling any ROT2 Protocol-Supporting Motor (e.g. SPID Motors)
See Also
--------
<http://ryeng.name/blog/3>
<https://github.com/jaidenfe/rot2proG/blob/master/rot2proG.py>
<https://www.haystack.mit.edu/edu/undergrad/srt/pdf%20files/MD-01%20en.pdf>
"""
VALID_PULSES_PER_DEGREE = (1, 2, 4)
def __init__(
self,
port,
baudrate,
az_limits,
el_limits,
pulses_per_degree=2,
test_pulses_per_degree=True,
):
"""Initializer for Rot2Motor
Parameters
----------
port : str
Serial Port Identifier String for Communicating with the Motor
baudrate : int
Baudrate for serial connection
az_limits : (float, float)
Tuple of Lower and Upper Azimuth Limits
el_limits : (float, float)
Tuple of Lower and Upper Elevation Limits
pulses_per_degree : int
Number of Motor Pulses per Degree of Movement
test_pulses_per_degree : bool
Whether to Run A Call to Ask the Motor What its True Pulses per Degree Is (By Calling status)
"""
Motor.__init__(self, port, baudrate, az_limits, el_limits)
self.serial = serial.Serial(
port=self.port,
baudrate=baudrate,
bytesize=serial.EIGHTBITS,
parity="N",
stopbits=serial.STOPBITS_ONE,
timeout=None,
)
if pulses_per_degree in Rot2Motor.VALID_PULSES_PER_DEGREE:
self.pulses_per_degree = pulses_per_degree
else:
raise ValueError("Invalid Pulse Per Degree Value")
if test_pulses_per_degree:
self.status()
def send_rot2_pkt(self, cmd, az=None, el=None):
"""Builds and Sends a ROT2 Command Packet over Serial
Parameters
----------
cmd : int
ROT2 Motor Command Value (0x2F -> Set, 0x1F -> Get, 0x0F -> Stop)
az : float
Azimuth Coordinate to Point At (If Applicable)
el : float
Elevation Coordinate to Point At (If Applicable)
Notes
-----
All send_rot2_pkt calls should be followed with a receive_rot2_pkt
Returns
-------
None
"""
if az is not None and el is not None:
azimuth = int(
self.pulses_per_degree * (az + 360.0) + 0.5
) # Formatted Az Pulse Value
elevation = int(
self.pulses_per_degree * (el + 360.0) + 0.5
) # Formatted El Pulse Value
else:
azimuth = 0
elevation = 0
azimuth_ticks = (
self.pulses_per_degree
) # Documentation for Rot2 Says This Is Ignored
elevation_ticks = (
self.pulses_per_degree
) # Documentation for Rot2 Says This Is Ignored
cmd_string = "W%04d%c%04d%c%c " % (
azimuth,
azimuth_ticks,
elevation,
elevation_ticks,
cmd,
)
cmd_bytes = cmd_string.encode("ascii")
# print("Packet of Size " + str(len(cmd_bytes)))
# print([hex(val) for val in cmd_bytes])
self.serial.write(cmd_bytes)
def receive_rot2_pkt(self):
"""Receives and Parsers an ROT2 Status Packet
Returns
-------
(float, float)
Azimuth and Elevation Coordinate as a Tuple of Floats
"""
received_vals = self.serial.read(12)
az = (
(received_vals[1] * 100)
+ (received_vals[2] * 10)
+ received_vals[3]
+ (received_vals[4] / 10.0)
- 360.0
)
el = (
(received_vals[6] * 100)
+ (received_vals[7] * 10)
+ received_vals[8]
+ (received_vals[9] / 10.0)
- 360.0
)
az_pulse_per_deg = received_vals[5]
el_pulse_per_deg = received_vals[10]
assert az_pulse_per_deg == el_pulse_per_deg # Consistency Check
if az_pulse_per_deg != self.pulses_per_degree:
print(
"Motor Pulses Per Degree Incorrect, Changing Value to "
+ str(az_pulse_per_deg)
)
self.pulses_per_degree = az_pulse_per_deg
return az, el
def point(self, az, el):
"""Point ROT2 Motor at AzEl Coordinate
Parameters
----------
az : float
Azimuth Coordinate to Point At
el : float
Elevation Coordinate to Point At
Returns
-------
None
"""
cmd = 0x2F # Rot2 Set Command
az_relative = az - self.az_limits[0]
el_relative = el - self.el_limits[0]
self.send_rot2_pkt(cmd, az=az_relative, el=el_relative)
def status(self):
"""Requests the Current Location of the ROT2 Motor
Returns
-------
(float, float)
Current Azimuth and Elevation Coordinate as a Tuple of Floats
"""
cmd = 0x1F # Rot2 Status Command
self.send_rot2_pkt(cmd)
az_relative, el_relative = self.receive_rot2_pkt()
return az_relative + self.az_limits[0], el_relative + self.el_limits[0]
def stop(self):
"""Stops the ROT2 Motor at its Current Location
Returns
-------
None
"""
cmd = 0x0F # Rot2 Stop Command
self.send_rot2_pkt(cmd)
# az_relative, el_relative = self.receive_rot2_pkt()
# return (az_relative + self.az_limits[0], el_relative + self.el_limits[0])
class CassiMotor(Motor):
"""
http://www.ncra.tifr.res.in/rpl/facilities/3m-srt
Based on the h180 function from the C SRT code:
ftp://gemini.haystack.mit.edu/pub/web/src/source_srt_newsrtsource_ver9.tar.gz
Copied from H180Motor class with correction for Cassi Corp. motor type.
Corrections taken from the Java version of SRT. This motor has a linear
actuator for elevation movement SuperPowerJack QARL-3636+
"""
# AZCOUNTS_PER_DEG = 52.0 * 27.0 / 120.0
# ELCOUNTS_PER_DEG = 52.0 * 27.0 / 120.0
# CASSI
# PTOLER = 1 # for encoders
COUNPERSTEP = 10000 # default large number for no stepping
AZCOUNTS_PER_DEG = 8.0 * 32.0 * 60.0 / (360.0 * 9.0) # default for CASSIMOUNT
# ROD = 1 # default to rod as on CASSIMOUNT
# Parameters described in: https://www.haystack.mit.edu/wp-content/uploads/2020/07/memo_SRT_017.pdf , note 5)
ROD1 = 14.25 # rigid arm length
ROD2 = 16.5 # distance from pushrod upper joint to el axis
ROD3 = 2.0 # pushrod collar offset
ROD4 = 110.0 # angle at horizon
ROD5 = 30.0 # pushrod counts per inch
# end CASSI
def __init__(
self, port, baudrate, az_limits, el_limits, counts_per_step=COUNPERSTEP
):
"""Initializer for the Cassi Motor, baudrate should be 2400.
Parameters
----------
port : str
Serial Port Identifier String for Communicating with the Motor
baudrate : int
Baudrate for serial connection
az_limits : (float, float)
Tuple of Lower and Upper Azimuth Limits
el_limits : (float, float)
Tuple of Lower and Upper Elevation Limits
counts_per_step : int
Maximum number of counts to move per call to function
"""
Motor.__init__(
self, port, az_limits=az_limits, el_limits=el_limits, baudrate=baudrate
),
self.serial = serial.Serial(
port=port,
baudrate=baudrate, # 2400,
bytesize=serial.EIGHTBITS,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE,
timeout=None,
)
if baudrate != 2400:
print(
f"The correct baud rate for the Cassi motor is 2400, while {baudrate} is parsed from the config file. Have you forgotten to change it?"
)
self.count_per_step = counts_per_step
self.az_lower_lim = az_limits[0]
self.el_lower_lim = el_limits[0]
self.az_count = 0.0
self.el_count = 0.0
def send_Cassi_cmd(self, az, el, stow):
"""Sends a Command to the Cassi Motor
Parameters
----------
az : float
Azimuth Coordinate to Point At
el : float
Elevation Coordinate to Point At
stow : bool
Whether or Not to Stow Antenna (makes az,el irrelevant)
Returns
-------
self.az_count, self.el_count : int
Current motos position
"""
# mm Result, https://www1.phys.vt.edu/~jhs/phys3154/SRT%20Technical%20Supplement.pdf
# 0 decrease azimuth (CCW)
# 1 increase azimuth (CW)
# 2 decrease elevation
# 3 increase elevation
# print("D_az: ", az)
# print("D_el: ", el)
azz = (
az - self.az_lower_lim
) # az to d1.azcmd w C i nie zgadza sie. Definiowana w app.py#L275, a tam jest brana z self.rotor_location z daemon.py#L601
# print("D1_0: ", azz)
# print("D1_1: ", az)
# print("D1_1: ", self.az_lower_lim)
ell = el - self.el_lower_lim
# print("D2: ", ell)
for axis in range(2):
mm = -1
count = 0 # number of “counts” of the reed microswitch on the drive gear to move
if stow:
# print("D2_2: stow")
if axis == 0:
mm = 0
else:
mm = 2
count = 8000
else:
if axis == 0:
# print("D3: axis==0")
acount = azz * CassiMotor.AZCOUNTS_PER_DEG - self.az_count
# print("D4: ", acount)
# print("D4_2: self.az_count - czy w drugiej iteracji jest wyliczona wczesniej wartosc? ", self.az_count)
if self.count_per_step and acount > self.count_per_step:
acount = self.count_per_step
# print("D5: ", acount)
if self.count_per_step and acount < -self.count_per_step:
acount = -self.count_per_step
# print("D6: ", acount)
if acount > 0:
count = (
acount + 0.5
) # 0.5 prevent rounding down. Change to math.ceil() ?
# print("D7: ", count)
else:
count = acount - 0.5
# print("D8: ", count)
if count > 0:
mm = 1
# print("D9: ", mm)
if count < 0:
mm = 0
# print("D10: ", mm)
if axis == 1:
# print("D11: axis==1")
# CASSI
lenzero = (
self.ROD1 * self.ROD1
+ self.ROD2 * self.ROD2
- 2.0
* self.ROD1
* self.ROD2
* cos((self.ROD4 - self.el_lower_lim) * pi / 180.0)
- self.ROD3 * self.ROD3
)
if lenzero >= 0.0:
lenzero = sqrt(lenzero)
else:
lenzero = 0
acount = (
self.ROD1 * self.ROD1
+ self.ROD2 * self.ROD2
- 2.0
* self.ROD1
* self.ROD2
* cos((self.ROD4 - (ell + self.el_lower_lim)) * pi / 180.0)
- self.ROD3 * self.ROD3
)
if acount >= 0.0:
acount = (-sqrt(acount) + lenzero) * self.ROD5
else:
acount = 0
acount = acount - self.el_count
# print("D11_2: self.el_count - czy w drugiej iteracji jest wyliczona wczesniej wartosc? ", self.el_count)
# end CASSI
# acount = ell * CassiMotor.ELCOUNTS_PER_DEG - self.el_count
# print("D12: ", acount)
if self.count_per_step and acount > self.count_per_step:
acount = self.count_per_step
# print("D13: ", acount)
if self.count_per_step and acount < -self.count_per_step:
acount = -self.count_per_step
# print("D14: ", acount)
if acount > 0:
count = acount + 0.5
# print("D15: ", count)
else:
count = acount - 0.5
# print("D16: ", count)
if count > 0:
mm = 3
# print("D17: ", mm)
if count < 0:
mm = 2
# print("D18: ", mm)
if count < 0:
count = -count
# print("D19: ", count)
if mm >= 0 and count:
cmd_string = " move %d %d%1c" % (mm, count, 13)
# print("D20: ", cmd_string)
self.serial.write(cmd_string.encode("ascii"))
resp = ""
sleep(0.01)
im = 0
i = 0
while i < 32:
ch = int.from_bytes(self.serial.read(1), byteorder="big")
# print("D21_0: ", ch)
sleep(0.01)
if i < 32:
resp += chr(ch)
# print("D21_1: ", resp)
i += 1
if ch == 13 or ch == 10:
# print("D22: ", ch)
break
status = i
# print("D23_0: ", status)
sleep(0.1)
# print("D23_1: ", resp)
for i in range(status):
if (
resp[i] == "M" or resp[i] == "T"
): # Move, Timeout. Timeout means STOW or limit switches
im = i
# print("D23_2: ", im)
ccount = int(
resp[im:status].split(" ")[-3]
) # rozdziela resp (spacja jako delimiter) i zwraca druga czesc jako int
# print("D24: ", ccount) # TU SIE ZACZYNA ROZNIC
if resp[im] == "M":
# print("D25_0: ", resp[im])
if mm == 1:
self.az_count += ccount
if mm == 0:
self.az_count -= ccount
if mm == 3:
self.el_count += ccount
if mm == 2:
self.el_count -= ccount
# print("D25_1: ", self.az_count)
# print("D25_2: ", self.el_count)
if resp[im] == "T":
# print("D26: ", resp[im])
if mm == 1:
self.az_count += count
if mm == 0:
self.az_count -= count
if mm == 3:
self.el_count += count
if mm == 2:
self.el_count -= count
if stow:
self.az_count = 0
self.el_count = 0
# print("D27: tu nie ma self.serial close, a w C jest zamykanie")
return self.az_count, self.el_count
def point(self, az, el):
"""Points an Cassi Motor at a Certain Az, El
Parameters
----------
az : float
Azimuth Coordinate to Point At
el : float
Elevation Coordinate to Point At
Returns
-------
None
"""
self.send_Cassi_cmd(az, el, False)
return self.status()
def status(self):
"""Requests the Current Location of the Cassi Motor
Returns
-------
(float, float)
Current Azimuth and Elevation Coordinate as a Tuple of Floats
"""
azz = self.az_count / CassiMotor.AZCOUNTS_PER_DEG
# ell = self.el_count / CassiMotor.ELCOUNTS_PER_DEG # CASSI
# CASSI
lenzero = (
self.ROD1 * self.ROD1
+ self.ROD2 * self.ROD2
- 2.0
* self.ROD1
* self.ROD2
* cos((self.ROD4 - self.el_lower_lim) * pi / 180.0)
- self.ROD3 * self.ROD3
)
# print("D0_0: ", self.el_lower_lim)
# print("D0_1: ", lenzero)
if lenzero >= 0.0:
lenzero = sqrt(lenzero)
else:
lenzero = 0
temp = lenzero - self.el_count / self.ROD5
temp = (
self.ROD1 * self.ROD1
+ self.ROD2 * self.ROD2
- self.ROD3 * self.ROD3
- temp * temp
) / (2.0 * self.ROD1 * self.ROD2)
# print("D0_2: ", temp)
ell = -acos(temp) * 180 / pi + self.ROD4 - self.el_lower_lim
# print("D0_3: ", ell)
# end CASSI
az = azz + self.az_lower_lim
el = (
ell + self.el_lower_lim
) # kolo frazy azel w Javie jest to wyswietlane ze zmiennej ell. W Co to sie chyba w ogole nie wyswietla. W sport.java jest też wyliczana ellnow
return az, el
class H180Motor(Motor): # TODO: Test!
"""
Class for Controlling any ROT2 Protocol-Supporting Motor (e.g. SPID Motors)
Based on the h180 function from the C SRT code
ftp://gemini.haystack.mit.edu/pub/web/src/source_srt_newsrtsource_ver9.tar.gz
"""
AZCOUNTS_PER_DEG = 52.0 * 27.0 / 120.0
ELCOUNTS_PER_DEG = 52.0 * 27.0 / 120.0
def __init__(self, port, baudrate, az_limits, el_limits, counts_per_step=100):
"""Initializer for the H180 Motor, baudrate should be 2400.
Parameters
----------
port : str
Serial Port Identifier String for Communicating with the Motor
baudrate : int
Baudrate for serial connection
az_limits : (float, float)
Tuple of Lower and Upper Azimuth Limits
el_limits : (float, float)
Tuple of Lower and Upper Elevation Limits
counts_per_step : int
Maximum number of counts to move per call to function
"""
# Motor.__init__(self, port, az_limits, el_limits)
Motor.__init__(
self, port, az_limits=az_limits, el_limits=el_limits, baudrate=baudrate
)
self.serial = serial.Serial(
port=port,
baudrate=baudrate, # 2400,
bytesize=serial.EIGHTBITS,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE,
timeout=None,
)
if baudrate != 2400:
print(
f"The correct baud rate for the H180 motor is 2400, while {baudrate} is parsed from the config file. Have you forgotten to change it?"
)
self.count_per_step = counts_per_step
self.az_lower_lim = az_limits[0]
self.el_lower_lim = el_limits[0]
self.az_count = 0.0
self.el_count = 0.0
def send_h180_cmd(self, az, el, stow):
"""Sends a Command to the H180 Motor
Parameters
----------
az : float
Azimuth Coordinate to Point At
el : float
Elevation Coordinate to Point At
stow : bool
Whether or Not to Stow Antenna (makes az,el irrelevant)
Returns
-------
None
"""
azz = az - self.az_lower_lim
ell = el - self.el_lower_lim
for axis in range(2):
mm = -1
count = 0
if stow:
if axis == 0:
mm = 0
else:
mm = 2
count = 8000
else:
if axis == 0:
acount = azz * H180Motor.AZCOUNTS_PER_DEG - self.az_count
if self.count_per_step and acount > self.count_per_step:
acount = self.count_per_step
if self.count_per_step and acount < -self.count_per_step:
acount = -self.count_per_step
if acount > 0:
count = acount + 0.5
else:
count = acount - 0.5
if count > 0:
mm = 1
if count < 0:
mm = 0
if axis == 1:
acount = ell * H180Motor.ELCOUNTS_PER_DEG - self.el_count
if self.count_per_step and acount > self.count_per_step:
acount = self.count_per_step
if self.count_per_step and acount < -self.count_per_step:
acount = -self.count_per_step
if acount > 0:
count = acount + 0.5
else:
count = acount - 0.5
if count > 0:
mm = 3
if count < 0:
mm = 2
if count < 0:
count = -count
if mm >= 0 and count:
cmd_string = " move %d %d%1c" % (mm, count, 13)
self.serial.write(cmd_string.encode("ascii"))
resp = ""
sleep(0.01)
im = 0
i = 0
while i < 32:
ch = int.from_bytes(self.serial.read(1), byteorder="big")
sleep(0.01)
if i < 32:
resp += chr(ch)
i += 1
if ch == 13 or ch == 10:
break
status = i
sleep(0.1)
for i in range(status):
if resp[i] == "M" or resp[i] == "T":
im = i
ccount = int(
resp[im:status].split(" ")[-1]
) # for Cassi motor correct value here is -3
if resp[im] == "M":
if mm == 1:
self.az_count += ccount
if mm == 0:
self.az_count -= ccount
if mm == 3:
self.el_count += ccount
if mm == 2:
self.el_count -= ccount
if resp[im] == "T":
if mm == 1:
self.az_count += count
if mm == 0:
self.az_count -= count
if mm == 3:
self.el_count += count
if mm == 2:
self.el_count -= count
if stow:
self.az_count = 0
self.el_count = 0
# return self.az_count, self.el_count # for Cassi motor this needs to be here
def point(self, az, el):
"""Points an H180 Motor at a Certain Az, El
Parameters
----------
az : float
Azimuth Coordinate to Point At
el : float
Elevation Coordinate to Point At
Returns
-------
None
"""
self.send_h180_cmd(az, el, False)
return self.status()
def status(self):
"""Requests the Current Location of the H180 Motor
Returns
-------
(float, float)
Current Azimuth and Elevation Coordinate as a Tuple of Floats
"""
azz = self.az_count / H180Motor.AZCOUNTS_PER_DEG
ell = self.el_count / H180Motor.ELCOUNTS_PER_DEG
az = azz + self.az_lower_lim
el = ell + self.el_lower_lim
return az, el
class PushRodMotor(Motor): # TODO: Test!
"""
Controls old SRT PushRod Style Motors. baudrate should be 2000
WARNING: This is currently a hard port of the azel function in sport.java, so expect some errors
"""
AZCOUNTS_PER_DEG = (
8.0 * 32.0 * 60.0 / (360.0 * 9.0)
) # Should this be 52.0 * 27.0 / 120.0?
ELCOUNTS_PER_DEG = 52.0 * 27.0 / 120.0
def __init__(
self,
port,
baudrate,
az_limits,
el_limits,
rod=(),
counts_per_step=100,
count_tol=1,
count_corr=(0, 0),
):
"""
Parameters
----------
port : str
Serial Port Identifier String for Communicating with the Motor
baudrate : int
Baudrate for serial connection
az_limits : (float, float)
Tuple of Lower and Upper Azimuth Limits
el_limits : (float, float)
Tuple of Lower and Upper Elevation Limits
"""
Motor.__init__(self, port, baudrate, az_limits, el_limits)
self.serial = serial.Serial(
port=port,
baudrate=baudrate,
bytesize=serial.EIGHTBITS,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE,
timeout=0.1,
)
self.rod = rod
self.az_count = 0.0
self.el_count = 0.0
self.count_per_step = counts_per_step
self.count_tol = count_tol
self.count_corrections = count_corr
self.az = az_limits[0]
self.el = el_limits[0]
self.azatstow = 0
self.elatstow = 0
def send_pushrod_cmd(self, az, el, stow):
"""Sends a Command to the Pushrod Motor
Parameters
----------
az : float
Azimuth Coordinate to Point At
el : float
Elevation Coordinate to Point At
stow : bool
Whether or Not to Stow Antenna (makes az, el irrelevant)
Returns
-------
None
"""
mm = count = 0
lenzero = 0.0
az = az % 360 # put az into reasonable range
az = az + 360.0 # put az in range 180 to 540
if az > 540.0:
az -= 360.0
if az < 180.0:
az += 360.0
region1 = region2 = region3 = 0
if (
self.az_limits[0] <= az < self.az_limits[1]
and self.el_limits[0] <= el <= self.el_limits[1]
):
region1 = 1
if az > self.az_limits[0] + 180.0 and el > (180.0 - self.el_limits[1]):
region2 = 1
if az < self.az_limits[1] - 180.0 and el > (180.0 - self.el_limits[1]):
region3 = 1
if region1 == 0 and region2 == 0 and region3 == 0:
raise ValueError("The Azimuth and Elevation Provided are Not Valid")
flip = 0
azz = az - self.az_limits[0]
ell = el - self.el_limits[0]
azscale = self.AZCOUNTS_PER_DEG
elscale = self.ELCOUNTS_PER_DEG
# g.set_slew(0);
lenzero = (
self.rod[0] * self.rod[0]
+ self.rod[1] * self.rod[1]
- 2.0
* self.rod[0]
* self.rod[1]
* cos((self.rod[3] - self.el_limits[0]) * pi / 180.0)
- self.rod[2] * self.rod[2]
)
if lenzero >= 0.0:
lenzero = sqrt(lenzero)
else:
lenzero = 0
ellcount = (
self.rod[0] * self.rod[0]
+ self.rod[1] * self.rod[1]
- 2.0 * self.rod[0] * self.rod[1] * cos((self.rod[3] - el) * pi / 180.0)
- self.rod[2] * self.rod[2]
)
if ellcount >= 0.0:
ellcount = (-sqrt(ellcount) + lenzero) * self.rod[4]
else:
ellcount = 0
if ellcount > self.el_count * 0.5:
axis = 1
else:
axis = 0
for ax in range(0, 2):
if axis == 0:
if azz * azscale > self.az_count * 0.5 - 0.5:
mm = 1
count = int(floor(azz * azscale - self.az_count * 0.5 + 0.5))
if azz * azscale <= self.az_count * 0.5 + 0.5:
mm = 0
count = int(floor(self.az_count * 0.5 - azz * azscale + 0.5))
else:
if ellcount > self.el_count * 0.5 - 0.5:
mm = 3
count = int(floor(ellcount - self.el_count * 0.5 + 0.5))
if ellcount <= self.el_count * 0.5 + 0.5:
mm = 2
count = int(floor(self.el_count * 0.5 - ellcount + 0.5))
ccount = count
if stow == 1: # drive to stow
count = 5000
if axis == 0:
mm = 0
if self.azatstow == 1:
count = 0
if axis == 1:
mm = 2 # complete azimuth motion to stow before completely drop in elevation
if self.elatstow == 1 or (
ccount <= 2.0 * self.count_per_step and self.azatstow == 0
):
count = 0
flip = 0
if count > self.count_per_step and ccount > self.count_per_step:
count = self.count_per_step
if count >= self.count_tol:
cmd_str = (
" move " + str(mm) + " " + str(count) + "\n"
) # need space at start and end
n = 0
if count < 5000:
str2 = "M " + str(count) + "\n"
else:
str2 = "T " + str(count) + "\n"