-
Notifications
You must be signed in to change notification settings - Fork 0
/
man_2_access.txt
170 lines (115 loc) · 9.14 KB
/
man_2_access.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
ACCESS(2) Linux Programmer's Manual ACCESS(2)
NAME
access, faccessat - check user's permissions for a file
SYNOPSIS
#include <unistd.h>
int access(const char *pathname, int mode);
#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>
int faccessat(int dirfd, const char *pathname, int mode, int flags);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
faccessat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE
DESCRIPTION
access() checks whether the calling process can access the file pathname. If pathname is a symbolic link, it is dereferenced.
The mode specifies the accessibility check(s) to be performed, and is either the value F_OK, or a mask consisting of the bitwise
OR of one or more of R_OK, W_OK, and X_OK. F_OK tests for the existence of the file. R_OK, W_OK, and X_OK test whether the
file exists and grants read, write, and execute permissions, respectively.
The check is done using the calling process's real UID and GID, rather than the effective IDs as is done when actually attempt‐
ing an operation (e.g., open(2)) on the file. Similarly, for the root user, the check uses the set of permitted capabilities
rather than the set of effective capabilities; and for non-root users, the check uses an empty set of capabilities.
This allows set-user-ID programs and capability-endowed programs to easily determine the invoking user's authority. In other
words, access() does not answer the "can I read/write/execute this file?" question. It answers a slightly different question:
"(assuming I'm a setuid binary) can the user who invoked me read/write/execute this file?", which gives set-user-ID programs the
possibility to prevent malicious users from causing them to read files which users shouldn't be able to read.
If the calling process is privileged (i.e., its real UID is zero), then an X_OK check is successful for a regular file if exe‐
cute permission is enabled for any of the file owner, group, or other.
faccessat()
The faccessat() system call operates in exactly the same way as access(), except for the differences described here.
If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to by the file descrip‐
tor dirfd (rather than relative to the current working directory of the calling process, as is done by access() for a relative
pathname).
If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted relative to the current working
directory of the calling process (like access()).
If pathname is absolute, then dirfd is ignored.
flags is constructed by ORing together zero or more of the following values:
AT_EACCESS
Perform access checks using the effective user and group IDs. By default, faccessat() uses the real IDs (like access()).
AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead return information about the link itself.
See openat(2) for an explanation of the need for faccessat().
RETURN VALUE
On success (all requested permissions granted, or mode is F_OK and the file exists), zero is returned. On error (at least one
bit in mode asked for a permission that is denied, or mode is F_OK and the file does not exist, or some other error occurred),
-1 is returned, and errno is set appropriately.
ERRORS
access() and faccessat() shall fail if:
EACCES The requested access would be denied to the file, or search permission is denied for one of the directories in the path
prefix of pathname. (See also path_resolution(7).)
ELOOP Too many symbolic links were encountered in resolving pathname.
ENAMETOOLONG
pathname is too long.
ENOENT A component of pathname does not exist or is a dangling symbolic link.
ENOTDIR
A component used as a directory in pathname is not, in fact, a directory.
EROFS Write permission was requested for a file on a read-only filesystem.
access() and faccessat() may fail if:
EFAULT pathname points outside your accessible address space.
EINVAL mode was incorrectly specified.
EIO An I/O error occurred.
ENOMEM Insufficient kernel memory was available.
ETXTBSY
Write access was requested to an executable which is being executed.
The following additional errors can occur for faccessat():
EBADF dirfd is not a valid file descriptor.
EINVAL Invalid flag specified in flags.
ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a directory.
VERSIONS
faccessat() was added to Linux in kernel 2.6.16; library support was added to glibc in version 2.4.
CONFORMING TO
access(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008.
faccessat(): POSIX.1-2008.
NOTES
Warning: Using these calls to check if a user is authorized to, for example, open a file before actually doing so using open(2)
creates a security hole, because the user might exploit the short time interval between checking and opening the file to manipu‐
late it. For this reason, the use of this system call should be avoided. (In the example just described, a safer alternative
would be to temporarily switch the process's effective user ID to the real ID and then call open(2).)
access() always dereferences symbolic links. If you need to check the permissions on a symbolic link, use faccessat() with the
flag AT_SYMLINK_NOFOLLOW.
These calls return an error if any of the access types in mode is denied, even if some of the other access types in mode are
permitted.
If the calling process has appropriate privileges (i.e., is superuser), POSIX.1-2001 permits an implementation to indicate suc‐
cess for an X_OK check even if none of the execute file permission bits are set. Linux does not do this.
A file is accessible only if the permissions on each of the directories in the path prefix of pathname grant search (i.e., exe‐
cute) access. If any directory is inaccessible, then the access() call fails, regardless of the permissions on the file itself.
Only access bits are checked, not the file type or contents. Therefore, if a directory is found to be writable, it probably
means that files can be created in the directory, and not that the directory can be written as a file. Similarly, a DOS file
may be found to be "executable," but the execve(2) call will still fail.
These calls may not work correctly on NFSv2 filesystems with UID mapping enabled, because UID mapping is done on the server and
hidden from the client, which checks permissions. (NFS versions 3 and higher perform the check on the server.) Similar prob‐
lems can occur to FUSE mounts.
C library/kernel differences
The raw faccessat() system call takes only the first three arguments. The AT_EACCESS and AT_SYMLINK_NOFOLLOW flags are actually
implemented within the glibc wrapper function for faccessat(). If either of these flags is specified, then the wrapper function
employs fstatat(2) to determine access permissions.
Glibc notes
On older kernels where faccessat() is unavailable (and when the AT_EACCESS and AT_SYMLINK_NOFOLLOW flags are not specified), the
glibc wrapper function falls back to the use of access(). When pathname is a relative pathname, glibc constructs a pathname
based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.
BUGS
In kernel 2.4 (and earlier) there is some strangeness in the handling of X_OK tests for superuser. If all categories of execute
permission are disabled for a nondirectory file, then the only access() test that returns -1 is when mode is specified as just
X_OK; if R_OK or W_OK is also specified in mode, then access() returns 0 for such files. Early 2.6 kernels (up to and including
2.6.3) also behaved in the same way as kernel 2.4.
In kernels before 2.6.20, these calls ignored the effect of the MS_NOEXEC flag if it was used to mount(2) the underlying
filesystem. Since kernel 2.6.20, the MS_NOEXEC flag is honored.
SEE ALSO
chmod(2), chown(2), open(2), setgid(2), setuid(2), stat(2), euidaccess(3), credentials(7), path_resolution(7), symlink(7)
COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information about reporting
bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
Linux 2016-03-15 ACCESS(2)