-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
79 lines (66 loc) · 2.75 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from keras.preprocessing.image import img_to_array
from keras.utils import np_utils
from nn.conv import LeNet
from imutils import paths
import imutils
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
from utils.cnnhelper import plotHistory
datasetPath = "smiles"
outputModel = "lenet.hdf5"
numEpochs = 15
# initialize the list of data and labels
data = []
labels = []
# loop over the input images
for imagePath in sorted(list(paths.list_images(datasetPath))):
# load the image, pre-process it, and store it in the data list
image = cv2.imread(imagePath)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = imutils.resize(image, width=28)
image = img_to_array(image)
data.append(image)
# extract the class label from the image path and update the labels list
label = imagePath.split(os.path.sep)[-3]
label = "smiling" if label == "positives" else "not_smiling"
labels.append(label)
# scale the raw pixel intensities to the range [0, 1]
data = np.array(data, dtype="float") / 255.0
labels = np.array(labels)
# convert the labels from integers to vectors
labelEncoder = LabelEncoder().fit(labels)
labels = np_utils.to_categorical(labelEncoder.transform(labels), 2)
# account for skew in the labeled data
# computes the total number of examples per class
classTotals = labels.sum(axis=0)
classWeight = classTotals.max() / classTotals
# In this case, classTotals will be an array: [9475, 3690]
# for “not smiling” and “smiling”, respectively
# So, classWeight used to handle the class imbalance,
# yielding the array: [1, 2.56]
# partition the data into training and testing splits using 80% of
# the data for training and the remaining 20% for testing
(trainX, testX, trainY, testY) = train_test_split(data, labels,
test_size=0.20, stratify=labels, random_state=42)
# initialize the model
print("[INFO] compiling model...")
model = LeNet.build(width=28, height=28, depth=1, classes=2)
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
# train the network
print("[INFO] training network...")
history = model.fit(trainX, trainY, validation_data=(testX, testY),
class_weight=classWeight, batch_size=64, epochs=numEpochs, verbose=1)
# evaluate the network
print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=64)
print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1),
target_names=labelEncoder.classes_))
# save the model to disk
print("[INFO] serializing network...")
model.save(outputModel)
plotHistory(history, numEpochs)