forked from d2l-ai/d2l-zh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
338 lines (302 loc) · 12.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from math import exp
from mxnet import gluon
from mxnet import autograd
from mxnet import nd
from mxnet import image
from mxnet.gluon import nn
import mxnet as mx
import numpy as np
from time import time
import matplotlib.pyplot as plt
class DataLoader(object):
"""similiar to gluon.data.DataLoader, but might be faster.
The main difference this data loader tries to read more exmaples each
time. But the limits are 1) all examples in dataset have the same shape, 2)
data transfomer needs to process multiple examples at each time
"""
def __init__(self, dataset, batch_size, shuffle):
self.dataset = dataset
self.batch_size = batch_size
self.shuffle = shuffle
def __iter__(self):
data = self.dataset[:]
X = data[0]
y = nd.array(data[1])
n = X.shape[0]
if self.shuffle:
idx = np.arange(n)
np.random.shuffle(idx)
X = nd.array(X.asnumpy()[idx])
y = nd.array(y.asnumpy()[idx])
for i in range(n//self.batch_size):
yield (X[i*self.batch_size:(i+1)*self.batch_size],
y[i*self.batch_size:(i+1)*self.batch_size])
def __len__(self):
return len(self.dataset)//self.batch_size
def load_data_fashion_mnist(batch_size, resize=None, root="~/.mxnet/datasets/fashion-mnist"):
"""download the fashion mnist dataest and then load into memory"""
def transform_mnist(data, label):
# transform a batch of examples
if resize:
n = data.shape[0]
new_data = nd.zeros((n, resize, resize, data.shape[3]))
for i in range(n):
new_data[i] = image.imresize(data[i], resize, resize)
data = new_data
# change data from batch x height x width x channel to batch x channel x height x width
return nd.transpose(data.astype('float32'), (0,3,1,2))/255, label.astype('float32')
mnist_train = gluon.data.vision.FashionMNIST(root=root, train=True, transform=transform_mnist)
mnist_test = gluon.data.vision.FashionMNIST(root=root, train=False, transform=transform_mnist)
train_data = DataLoader(mnist_train, batch_size, shuffle=True)
test_data = DataLoader(mnist_test, batch_size, shuffle=False)
return (train_data, test_data)
def try_gpu():
"""If GPU is available, return mx.gpu(0); else return mx.cpu()"""
try:
ctx = mx.gpu()
_ = nd.array([0], ctx=ctx)
except:
ctx = mx.cpu()
return ctx
def try_all_gpus():
"""Return all available GPUs, or [mx.gpu()] if there is no GPU"""
ctx_list = []
try:
for i in range(16):
ctx = mx.gpu(i)
_ = nd.array([0], ctx=ctx)
ctx_list.append(ctx)
except:
pass
if not ctx_list:
ctx_list = [mx.cpu()]
return ctx_list
def SGD(params, lr):
for param in params:
param[:] = param - lr * param.grad
def accuracy(output, label):
return nd.mean(output.argmax(axis=1)==label).asscalar()
def _get_batch(batch, ctx):
"""return data and label on ctx"""
if isinstance(batch, mx.io.DataBatch):
data = batch.data[0]
label = batch.label[0]
else:
data, label = batch
return (gluon.utils.split_and_load(data, ctx),
gluon.utils.split_and_load(label, ctx),
data.shape[0])
def evaluate_accuracy(data_iterator, net, ctx=[mx.cpu()]):
if isinstance(ctx, mx.Context):
ctx = [ctx]
acc = nd.array([0])
n = 0.
if isinstance(data_iterator, mx.io.MXDataIter):
data_iterator.reset()
for batch in data_iterator:
data, label, batch_size = _get_batch(batch, ctx)
for X, y in zip(data, label):
acc += nd.sum(net(X).argmax(axis=1)==y).copyto(mx.cpu())
n += y.size
acc.wait_to_read() # don't push too many operators into backend
return acc.asscalar() / n
def train(train_data, test_data, net, loss, trainer, ctx, num_epochs, print_batches=None):
"""Train a network"""
print("Start training on ", ctx)
if isinstance(ctx, mx.Context):
ctx = [ctx]
for epoch in range(num_epochs):
train_loss, train_acc, n, m = 0.0, 0.0, 0.0, 0.0
if isinstance(train_data, mx.io.MXDataIter):
train_data.reset()
start = time()
for i, batch in enumerate(train_data):
data, label, batch_size = _get_batch(batch, ctx)
losses = []
with autograd.record():
outputs = [net(X) for X in data]
losses = [loss(yhat, y) for yhat, y in zip(outputs, label)]
for l in losses:
l.backward()
train_acc += sum([(yhat.argmax(axis=1)==y).sum().asscalar()
for yhat, y in zip(outputs, label)])
train_loss += sum([l.sum().asscalar() for l in losses])
trainer.step(batch_size)
n += batch_size
m += sum([y.size for y in label])
if print_batches and (i+1) % print_batches == 0:
print("Batch %d. Loss: %f, Train acc %f" % (
n, train_loss/n, train_acc/m
))
test_acc = evaluate_accuracy(test_data, net, ctx)
print("Epoch %d. Loss: %.3f, Train acc %.2f, Test acc %.2f, Time %.1f sec" % (
epoch, train_loss/n, train_acc/m, test_acc, time() - start
))
class Residual(nn.HybridBlock):
def __init__(self, channels, same_shape=True, **kwargs):
super(Residual, self).__init__(**kwargs)
self.same_shape = same_shape
with self.name_scope():
strides = 1 if same_shape else 2
self.conv1 = nn.Conv2D(channels, kernel_size=3, padding=1,
strides=strides)
self.bn1 = nn.BatchNorm()
self.conv2 = nn.Conv2D(channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm()
if not same_shape:
self.conv3 = nn.Conv2D(channels, kernel_size=1,
strides=strides)
def hybrid_forward(self, F, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
if not self.same_shape:
x = self.conv3(x)
return F.relu(out + x)
def resnet18(num_classes):
net = nn.HybridSequential()
with net.name_scope():
net.add(
nn.BatchNorm(),
nn.Conv2D(64, kernel_size=3, strides=1),
nn.MaxPool2D(pool_size=3, strides=2),
Residual(64),
Residual(64),
Residual(128, same_shape=False),
Residual(128),
Residual(256, same_shape=False),
Residual(256),
nn.GlobalAvgPool2D(),
nn.Dense(num_classes)
)
return net
def show_images(imgs, nrows, ncols, figsize=None):
"""plot a list of images"""
if not figsize:
figsize = (ncols, nrows)
_, figs = plt.subplots(nrows, ncols, figsize=figsize)
for i in range(nrows):
for j in range(ncols):
figs[i][j].imshow(imgs[i*ncols+j].asnumpy())
figs[i][j].axes.get_xaxis().set_visible(False)
figs[i][j].axes.get_yaxis().set_visible(False)
plt.show()
def data_iter_random(corpus_indices, batch_size, num_steps, ctx=None):
"""Sample mini-batches in a random order from sequential data."""
# Subtract 1 because label indices are corresponding input indices + 1.
num_examples = (len(corpus_indices) - 1) // num_steps
epoch_size = num_examples // batch_size
# Randomize samples.
example_indices = list(range(num_examples))
random.shuffle(example_indices)
def _data(pos):
return corpus_indices[pos: pos + num_steps]
for i in range(epoch_size):
# Read batch_size random samples each time.
i = i * batch_size
batch_indices = example_indices[i: i + batch_size]
data = nd.array(
[_data(j * num_steps) for j in batch_indices], ctx=ctx)
label = nd.array(
[_data(j * num_steps + 1) for j in batch_indices], ctx=ctx)
yield data, label
def data_iter_consecutive(corpus_indices, batch_size, num_steps, ctx=None):
"""Sample mini-batches in a consecutive order from sequential data."""
corpus_indices = nd.array(corpus_indices, ctx=ctx)
data_len = len(corpus_indices)
batch_len = data_len // batch_size
indices = corpus_indices[0: batch_size * batch_len].reshape((
batch_size, batch_len))
# Subtract 1 because label indices are corresponding input indices + 1.
epoch_size = (batch_len - 1) // num_steps
for i in range(epoch_size):
i = i * num_steps
data = indices[:, i: i + num_steps]
label = indices[:, i + 1: i + num_steps + 1]
yield data, label
def grad_clipping(params, clipping_norm, ctx):
"""Gradient clipping."""
if clipping_norm is not None:
norm = nd.array([0.0], ctx)
for p in params:
norm += nd.sum(p.grad ** 2)
norm = nd.sqrt(norm).asscalar()
if norm > clipping_norm:
for p in params:
p.grad[:] *= clipping_norm / norm
def predict_rnn(rnn, prefix, num_chars, params, hidden_dim, ctx, idx_to_char,
char_to_idx, get_inputs, is_lstm=False):
"""Predict the next chars given the prefix."""
prefix = prefix.lower()
state_h = nd.zeros(shape=(1, hidden_dim), ctx=ctx)
if is_lstm:
state_c = nd.zeros(shape=(1, hidden_dim), ctx=ctx)
output = [char_to_idx[prefix[0]]]
for i in range(num_chars + len(prefix)):
X = nd.array([output[-1]], ctx=ctx)
if is_lstm:
Y, state_h, state_c = rnn(get_inputs(X), state_h, state_c, *params)
else:
Y, state_h = rnn(get_inputs(X), state_h, *params)
if i < len(prefix)-1:
next_input = char_to_idx[prefix[i+1]]
else:
next_input = int(Y[0].argmax(axis=1).asscalar())
output.append(next_input)
return ''.join([idx_to_char[i] for i in output])
def train_and_predict_rnn(rnn, is_random_iter, epochs, num_steps, hidden_dim,
learning_rate, clipping_norm, batch_size,
pred_period, pred_len, seqs, get_params, get_inputs,
ctx, corpus_indices, idx_to_char, char_to_idx,
is_lstm=False):
"""Train an RNN model and predict the next item in the sequence."""
if is_random_iter:
data_iter = data_iter_random
else:
data_iter = data_iter_consecutive
params = get_params()
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
for e in range(1, epochs + 1):
# If consecutive sampling is used, in the same epoch, the hidden state
# is initialized only at the beginning of the epoch.
if not is_random_iter:
state_h = nd.zeros(shape=(batch_size, hidden_dim), ctx=ctx)
if is_lstm:
state_c = nd.zeros(shape=(batch_size, hidden_dim), ctx=ctx)
train_loss, num_examples = 0, 0
for data, label in data_iter(corpus_indices, batch_size, num_steps,
ctx):
# If random sampling is used, the hidden state has to be
# initialized for each mini-batch.
if is_random_iter:
state_h = nd.zeros(shape=(batch_size, hidden_dim), ctx=ctx)
if is_lstm:
state_c = nd.zeros(shape=(batch_size, hidden_dim), ctx=ctx)
with autograd.record():
# outputs shape:(batch_size, vocab_size)
if is_lstm:
outputs, state_h, state_c = rnn(get_inputs(data), state_h,
state_c, *params)
else:
outputs, state_h = rnn(get_inputs(data), state_h, *params)
# Let t_ib_j be the j-th element of the mini-batch at time i.
# label shape:(batch_size * num_steps)
# label = [t_0b_0, t_0b_1, ..., t_1b_0, t_1b_1, ..., ].
label = label.T.reshape((-1,))
# Concatenate outputs:
# shape: (batch_size * num_steps, vocab_size).
outputs = nd.concat(*outputs, dim=0)
# Now outputs and label are aligned.
loss = softmax_cross_entropy(outputs, label)
loss.backward()
grad_clipping(params, clipping_norm, ctx)
SGD(params, learning_rate)
train_loss += nd.sum(loss).asscalar()
num_examples += loss.size
if e % pred_period == 0:
print("Epoch %d. Training perplexity %f" % (e,
exp(train_loss/num_examples)))
for seq in seqs:
print(' - ', predict_rnn(rnn, seq, pred_len, params,
hidden_dim, ctx, idx_to_char, char_to_idx, get_inputs,
is_lstm))
print()