-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathLSH_sp_example.py
executable file
·129 lines (103 loc) · 4.38 KB
/
LSH_sp_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import time
from math import ceil
import numpy as np
from sklearn.utils import shuffle
from LSH_sp import get_contrast, find_best_r_normalize, g_normalize, f_h, LSH
import matplotlib.pyplot as plt
data = np.load('CIFAR10_resnet50-keras_features.npz')
x_trn = np.vstack((data['features_training'], data['features_testing']))
y_trn = np.hstack((data['labels_training'], data['labels_testing']))
x_trn, y_trn = shuffle(x_trn, y_trn, random_state=0)
x_trn = np.reshape(x_trn, (-1, 2048))
x_tst, y_tst = x_trn[:100], y_trn[:100]
x_val, y_val = x_trn[100:1100], y_trn[100:1100]
x_trn, y_trn = x_trn[1100:], y_trn[1100:]
# we are using 1-nn classifier
K = 1
eps = 0.1
K_star = max(K, ceil(1 / eps))
get_contrast(x_val)
dist_rand = np.load('eps0.1/dist_rand.npy')
contrast = np.load('eps0.1/contrast.npy')
dist_knn = np.load('eps0.1/dist_knn.npy')
dist_rand = np.mean(dist_rand, axis=0)
contrast = np.mean(contrast, axis=0)[K_star - 1]
dist_knn = np.mean(dist_knn, axis=0)[K_star - 1]
search_range = np.arange(1e-3, 10, 1e-3)
r_vec_normalize = find_best_r_normalize(search_range, contrast)
g_vec = g_normalize(contrast, r_vec_normalize)
# plot g(C_K) vs r, we want g(C_k) to be small
# search range, find r that minimize g, shape should be similar to convex
g = g_normalize(contrast, search_range)
plt.figure()
plt.plot(search_range, g)
plt.show()
np.save('eps0.1/selected_param_r_' + str(K_star) + '.npy', r_vec_normalize)
np.save('eps0.1/selected_param_g_' + str(K_star) + '.npy', g_vec)
def equal(a, b):
return int(a == b)
def fine_tune_val(n_hash_table=10, alpha=0.5, file=False, val_sp_gt=None):
t = r_vec_normalize
n_trn = len(x_trn)
n_hash_bit = int(np.ceil(np.log(n_trn) * alpha / np.log(1 / f_h(1, t))))
if file is True:
print(n_hash_bit, file=open('eps0.1/log.txt', 'a'))
else:
print(n_hash_bit)
start = time.time()
lsh = LSH(n_hash_bit=n_hash_bit, n_hash_table=n_hash_table, x_trn=x_trn, y_trn=y_trn, dist_rand=dist_rand,
equal=equal, t=t)
runtime_build_hash = time.time() - start
if file is True:
print(runtime_build_hash, file=open('eps0.1/log.txt', 'a'))
else:
print(runtime_build_hash)
start = time.time()
x_val_knn_approx, nns_vec = lsh.get_approx_KNN(x_val, K_star)
runtime_query = time.time() - start
if file is True:
print(runtime_query, file=open('eps0.1/log.txt', 'a'))
else:
print(runtime_query)
start = time.time()
sp_approx = lsh.compute_approx_shapley(x_val_knn_approx, y_val, K)
runtime_approx_value = time.time() - start
if file is True:
print('it takes %s to get appox knn value' % runtime_approx_value, file=open('eps0.1/log.txt', 'a'))
else:
print('it takes %s to get appox knn value' % runtime_approx_value)
if val_sp_gt is not None:
sp_err_inf_val = np.linalg.norm(val_sp_gt - sp_approx, ord=np.inf, axis=1)
if file is True:
print('max error %s' % np.percentile(sp_err_inf_val, 90), file=open('eps0.1/log.txt', 'a'))
else:
print('max error %s' % np.percentile(sp_err_inf_val, 90))
return lsh
def fine_tune_test(lsh=None, file=False, sp_gt=None):
start = time.time()
x_tst_knn_approx, nns_vec = lsh.get_approx_KNN(x_tst, K_star)
runtime_query = time.time() - start
if file is True:
print(runtime_query, file=open('eps0.1/log.txt', 'a'))
else:
print(runtime_query)
start = time.time()
sp_approx = lsh.compute_approx_shapley(x_tst_knn_approx, y_tst, K)
runtime_approx_value = time.time() - start
if file is True:
print('it takes %s to get appox knn value' % runtime_approx_value, file=open('eps0.1/log.txt', 'a'))
else:
print('it takes %s to get appox knn value' % runtime_approx_value)
if sp_gt is not None:
sp_err_inf_val = np.linalg.norm(sp_gt - sp_approx, ord=np.inf, axis=1)
if file is True:
print('max error %s' % np.percentile(sp_err_inf_val, 90), file=open('eps0.1/log.txt', 'a'))
else:
print('max error %s' % np.percentile(sp_err_inf_val, 90))
return sp_approx, nns_vec
val_sp_gt = np.load('val_exact_sp_gt.npy')
tst_sp_gt = np.load('tst_exact_sp_gt.npy')
lsh_82_05 = fine_tune_val(82, 0.5, val_sp_gt=val_sp_gt)
sp_approx_82_05, nns_vec_82_05 = fine_tune_test(lsh=lsh_82_05, sp_gt=tst_sp_gt)
np.save('eps0.1/sp_approx_05', sp_approx_82_05)
np.save('eps0.1/lsh_82_05', lsh_82_05)