-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathloan_helper.py
231 lines (186 loc) · 8.02 KB
/
loan_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from collections import defaultdict
import config
import torch
import torch.utils.data
import datetime
from helper import Helper
import random
import logging
from torchvision import datasets, transforms
import numpy as np
from models.loan_model import LoanNet
import csv
import os
import pandas as pd
import torch
import torch.utils.data as data
from sklearn.model_selection import train_test_split
import os
import yaml
logger = logging.getLogger("logger")
POISONED_PARTICIPANT_POS = 0
class StateHelper():
def __init__(self, params):
self.params= params
self.name=""
def load_data(self, filename='./data/loan/loan_IA.csv'):
logger.info('Loading data')
self.all_dataset = LoanDataset(filename)
def get_trainloader(self):
self.all_dataset.SetIsTrain(True)
train_loader = torch.utils.data.DataLoader(self.all_dataset, batch_size=self.params['batch_size'],
shuffle=True)
return train_loader
def get_testloader(self):
self.all_dataset.SetIsTrain(False)
test_loader = torch.utils.data.DataLoader(self.all_dataset,
batch_size=self.params['test_batch_size'],
shuffle=False)
return test_loader
def get_poison_trainloader(self):
self.all_dataset.SetIsTrain(True)
return torch.utils.data.DataLoader(self.all_dataset,
batch_size=self.params['batch_size'],
shuffle=True)
def get_poison_testloader(self):
self.all_dataset.SetIsTrain(False)
return torch.utils.data.DataLoader(self.all_dataset,
batch_size=self.params['test_batch_size'],
shuffle=False)
def get_batch(self, train_data, bptt, evaluation=False):
data, target = bptt
data = data.float().to(config.device)
target = target.long().to(config.device)
if evaluation:
data.requires_grad_(False)
target.requires_grad_(False)
return data, target
class LoanHelper(Helper):
def poison(self):
return
def create_model(self):
local_model = LoanNet(name='Local',
created_time=self.params['current_time'])
local_model=local_model.to(config.device)
target_model = LoanNet(name='Target',
created_time=self.params['current_time'])
target_model=target_model.to(config.device)
if self.params['resumed_model']:
if torch.cuda.is_available():
loaded_params = torch.load(f"saved_models/{self.params['resumed_model_name']}")
else:
loaded_params = torch.load(f"saved_models/{self.params['resumed_model_name']}",
map_location='cpu')
target_model.load_state_dict(loaded_params['state_dict'])
self.start_epoch = loaded_params['epoch']+1
self.params['lr'] = loaded_params.get('lr', self.params['lr'])
logger.info(f"Loaded parameters from saved model: LR is"
f" {self.params['lr']} and current epoch is {self.start_epoch}")
else:
self.start_epoch = 1
self.local_model = local_model
self.target_model = target_model
def load_data(self,params_loaded):
self.statehelper_dic ={}
self.allStateHelperList=[]
self.participants_list=[]
self.advasarial_namelist=params_loaded['adversary_list']
self.benign_namelist = []
self.feature_dict = dict()
filepath_prefix='./data/loan/'
all_userfilename_list = os.listdir(filepath_prefix)
for j in range(0,len(all_userfilename_list)):
user_filename = all_userfilename_list[j]
state_name = user_filename[5:7]
helper = StateHelper(params=params_loaded)
file_path = filepath_prefix+ user_filename
helper.load_data(file_path)
self.allStateHelperList.append(helper)
helper.name = state_name
self.statehelper_dic[state_name] = helper
if j==0:
for k in range(0,len(helper.all_dataset.data_column_name)):
self.feature_dict[helper.all_dataset.data_column_name[k]]=k
for j in range(0, params_loaded['number_of_total_participants']):
if j >= len(all_userfilename_list):
break
user_filename = all_userfilename_list[j]
state_name = user_filename[5:7]
if state_name not in self.advasarial_namelist:
self.benign_namelist.append(state_name)
if params_loaded['is_random_namelist']==False:
self.participants_list = params_loaded['participants_namelist']
else:
self.participants_list= self.benign_namelist+ self.advasarial_namelist
class LoanDataset(data.Dataset):
# label from 0 ~ 8
# ['Current', 'Fully Paid', 'Late (31-120 days)', 'In Grace Period', 'Charged Off',
# 'Late (16-30 days)', 'Default', 'Does not meet the credit policy. Status:Fully Paid',
# 'Does not meet the credit policy. Status:Charged Off']
def __init__(self, csv_file):
"""
Args:
csv_file (string): Path to the csv file with annotations.
"""
self.train = True
self.df = pd.read_csv(csv_file)
self.train_data = []
self.train_labels = []
self.test_data = []
self.test_labels = []
loans_df = self.df.copy()
x_feature = list(loans_df.columns)
x_feature.remove('loan_status')
x_val = loans_df[x_feature]
y_val = loans_df['loan_status']
# x_val.head()
y_val=y_val.astype('int')
x_train, x_test, y_train, y_test = train_test_split(x_val, y_val, test_size=0.2, random_state=42)
self.data_column_name = x_train.columns.values.tolist() # list
self.label_column_name= x_test.columns.values.tolist()
self.train_data = x_train.values # numpy array
self.test_data = x_test.values
self.train_labels = y_train.values
self.test_labels = y_test.values
print(csv_file, "train", len(self.train_data),"test",len(self.test_data))
def __len__(self):
if self.train:
return len(self.train_data)
else:
return len(self.test_data)
def __getitem__(self, index):
if self.train:
data, label = self.train_data[index], self.train_labels[index]
else:
data, label = self.test_data[index], self.test_labels[index]
return data, label
def SetIsTrain(self,isTrain):
self.train =isTrain
def getPortion(self,loan_status=0):
train_count= 0
test_count=0
for i in range(0,len(self.train_labels)):
if self.train_labels[i]==loan_status:
train_count+=1
for i in range(0,len(self.test_labels)):
if self.test_labels[i]==loan_status:
test_count+=1
return (train_count+test_count)/ (len(self.train_labels)+len(self.test_labels)), \
train_count/len(self.train_labels), test_count/len(self.test_labels)
if __name__ == '__main__':
with open(f'./utils/loan_params.yaml', 'r') as f:
params_loaded = yaml.load(f)
current_time = datetime.datetime.now().strftime('%b.%d_%H.%M.%S')
helper = LoanHelper(current_time=current_time, params=params_loaded,
name=params_loaded.get('name', 'loan'))
helper.load_data(params_loaded)
state_keys = list(helper.statehelper_dic.keys())
for i in range(0,len(state_keys)):
state_helper = helper.statehelper_dic[state_keys[i]]
data_source = state_helper.get_trainloader()
data_iterator = data_source
count= 0
for batch_id, batch in enumerate(data_iterator):
count +=1
print(state_keys[i], "train batch num",count)
break