-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathimage_train.py
315 lines (274 loc) · 19.4 KB
/
image_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import utils.csv_record as csv_record
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
import main
import test
import copy
import config
def ImageTrain(helper, start_epoch, local_model, target_model, is_poison,agent_name_keys):
epochs_submit_update_dict = dict()
num_samples_dict = dict()
current_number_of_adversaries=0
for temp_name in agent_name_keys:
if temp_name in helper.params['adversary_list']:
current_number_of_adversaries+=1
for model_id in range(helper.params['no_models']):
epochs_local_update_list = []
last_local_model = dict()
client_grad = [] # only works for aggr_epoch_interval=1
for name, data in target_model.state_dict().items():
last_local_model[name] = target_model.state_dict()[name].clone()
agent_name_key = agent_name_keys[model_id]
## Synchronize LR and models
model = local_model
model.copy_params(target_model.state_dict())
optimizer = torch.optim.SGD(model.parameters(), lr=helper.params['lr'],
momentum=helper.params['momentum'],
weight_decay=helper.params['decay'])
model.train()
adversarial_index= -1
localmodel_poison_epochs = helper.params['poison_epochs']
if is_poison and agent_name_key in helper.params['adversary_list']:
for temp_index in range(0, len(helper.params['adversary_list'])):
if int(agent_name_key) == helper.params['adversary_list'][temp_index]:
adversarial_index= temp_index
localmodel_poison_epochs = helper.params[str(temp_index) + '_poison_epochs']
main.logger.info(
f'poison local model {agent_name_key} index {adversarial_index} ')
break
if len(helper.params['adversary_list']) == 1:
adversarial_index = -1 # the global pattern
for epoch in range(start_epoch, start_epoch + helper.params['aggr_epoch_interval']):
target_params_variables = dict()
for name, param in target_model.named_parameters():
target_params_variables[name] = last_local_model[name].clone().detach().requires_grad_(False)
if is_poison and agent_name_key in helper.params['adversary_list'] and (epoch in localmodel_poison_epochs):
main.logger.info('poison_now')
poison_lr = helper.params['poison_lr']
internal_epoch_num = helper.params['internal_poison_epochs']
step_lr = helper.params['poison_step_lr']
poison_optimizer = torch.optim.SGD(model.parameters(), lr=poison_lr,
momentum=helper.params['momentum'],
weight_decay=helper.params['decay'])
scheduler = torch.optim.lr_scheduler.MultiStepLR(poison_optimizer,
milestones=[0.2 * internal_epoch_num,
0.8 * internal_epoch_num], gamma=0.1)
temp_local_epoch = (epoch - 1) *internal_epoch_num
for internal_epoch in range(1, internal_epoch_num + 1):
temp_local_epoch += 1
_, data_iterator = helper.train_data[agent_name_key]
poison_data_count = 0
total_loss = 0.
correct = 0
dataset_size = 0
dis2global_list=[]
for batch_id, batch in enumerate(data_iterator):
data, targets, poison_num = helper.get_poison_batch(batch, adversarial_index=adversarial_index,evaluation=False)
poison_optimizer.zero_grad()
dataset_size += len(data)
poison_data_count += poison_num
output = model(data)
class_loss = nn.functional.cross_entropy(output, targets)
distance_loss = helper.model_dist_norm_var(model, target_params_variables)
# Lmodel = αLclass + (1 − α)Lano; alpha_loss =1 fixed
loss = helper.params['alpha_loss'] * class_loss + \
(1 - helper.params['alpha_loss']) * distance_loss
loss.backward()
# get gradients
if helper.params['aggregation_methods']==config.AGGR_FOOLSGOLD:
for i, (name, params) in enumerate(model.named_parameters()):
if params.requires_grad:
if internal_epoch == 1 and batch_id == 0:
client_grad.append(params.grad.clone())
else:
client_grad[i] += params.grad.clone()
poison_optimizer.step()
total_loss += loss.data
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
if helper.params["batch_track_distance"]:
# we can calculate distance to this model now.
temp_data_len = len(data_iterator)
distance_to_global_model = helper.model_dist_norm(model, target_params_variables)
dis2global_list.append(distance_to_global_model)
model.track_distance_batch_vis(vis=main.vis, epoch=temp_local_epoch,
data_len=temp_data_len,
batch=batch_id,distance_to_global_model= distance_to_global_model,
eid=helper.params['environment_name'],
name=str(agent_name_key),is_poisoned=True)
if step_lr:
scheduler.step()
main.logger.info(f'Current lr: {scheduler.get_lr()}')
acc = 100.0 * (float(correct) / float(dataset_size))
total_l = total_loss / dataset_size
main.logger.info(
'___PoisonTrain {} , epoch {:3d}, local model {}, internal_epoch {:3d}, Average loss: {:.4f}, '
'Accuracy: {}/{} ({:.4f}%), train_poison_data_count: {}'.format(model.name, epoch, agent_name_key,
internal_epoch,
total_l, correct, dataset_size,
acc, poison_data_count))
csv_record.train_result.append(
[agent_name_key, temp_local_epoch,
epoch, internal_epoch, total_l.item(), acc, correct, dataset_size])
if helper.params['vis_train']:
model.train_vis(main.vis, temp_local_epoch,
acc, loss=total_l, eid=helper.params['environment_name'], is_poisoned=True,
name=str(agent_name_key) )
num_samples_dict[agent_name_key] = dataset_size
if helper.params["batch_track_distance"]:
main.logger.info(
f'MODEL {model_id}. P-norm is {helper.model_global_norm(model):.4f}. '
f'Distance to the global model: {dis2global_list}. ')
# internal epoch finish
main.logger.info(f'Global model norm: {helper.model_global_norm(target_model)}.')
main.logger.info(f'Norm before scaling: {helper.model_global_norm(model)}. '
f'Distance: {helper.model_dist_norm(model, target_params_variables)}')
if not helper.params['baseline']:
main.logger.info(f'will scale.')
epoch_loss, epoch_acc, epoch_corret, epoch_total = test.Mytest(helper=helper, epoch=epoch,
model=model, is_poison=False,
visualize=False,
agent_name_key=agent_name_key)
csv_record.test_result.append(
[agent_name_key, epoch, epoch_loss, epoch_acc, epoch_corret, epoch_total])
epoch_loss, epoch_acc, epoch_corret, epoch_total = test.Mytest_poison(helper=helper,
epoch=epoch,
model=model,
is_poison=True,
visualize=False,
agent_name_key=agent_name_key)
csv_record.posiontest_result.append(
[agent_name_key, epoch, epoch_loss, epoch_acc, epoch_corret, epoch_total])
clip_rate = helper.params['scale_weights_poison']
main.logger.info(f"Scaling by {clip_rate}")
for key, value in model.state_dict().items():
target_value = last_local_model[key]
new_value = target_value + (value - target_value) * clip_rate
model.state_dict()[key].copy_(new_value)
distance = helper.model_dist_norm(model, target_params_variables)
main.logger.info(
f'Scaled Norm after poisoning: '
f'{helper.model_global_norm(model)}, distance: {distance}')
csv_record.scale_temp_one_row.append(epoch)
csv_record.scale_temp_one_row.append(round(distance, 4))
if helper.params["batch_track_distance"]:
temp_data_len = len(helper.train_data[agent_name_key][1])
model.track_distance_batch_vis(vis=main.vis, epoch=temp_local_epoch,
data_len=temp_data_len,
batch=temp_data_len-1,
distance_to_global_model=distance,
eid=helper.params['environment_name'],
name=str(agent_name_key), is_poisoned=True)
distance = helper.model_dist_norm(model, target_params_variables)
main.logger.info(f"Total norm for {current_number_of_adversaries} "
f"adversaries is: {helper.model_global_norm(model)}. distance: {distance}")
else:
temp_local_epoch = (epoch - 1) * helper.params['internal_epochs']
for internal_epoch in range(1, helper.params['internal_epochs'] + 1):
temp_local_epoch += 1
_, data_iterator = helper.train_data[agent_name_key]
total_loss = 0.
correct = 0
dataset_size = 0
dis2global_list = []
for batch_id, batch in enumerate(data_iterator):
optimizer.zero_grad()
data, targets = helper.get_batch(data_iterator, batch,evaluation=False)
dataset_size += len(data)
output = model(data)
loss = nn.functional.cross_entropy(output, targets)
loss.backward()
# get gradients
if helper.params['aggregation_methods'] == config.AGGR_FOOLSGOLD:
for i, (name, params) in enumerate(model.named_parameters()):
if params.requires_grad:
if internal_epoch == 1 and batch_id == 0:
client_grad.append(params.grad.clone())
else:
client_grad[i] += params.grad.clone()
optimizer.step()
total_loss += loss.data
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
if helper.params["vis_train_batch_loss"]:
cur_loss = loss.data
temp_data_len = len(data_iterator)
model.train_batch_vis(vis=main.vis,
epoch=temp_local_epoch,
data_len=temp_data_len,
batch=batch_id,
loss=cur_loss,
eid=helper.params['environment_name'],
name=str(agent_name_key) , win='train_batch_loss', is_poisoned=False)
if helper.params["batch_track_distance"]:
# we can calculate distance to this model now
temp_data_len = len(data_iterator)
distance_to_global_model = helper.model_dist_norm(model, target_params_variables)
dis2global_list.append(distance_to_global_model)
model.track_distance_batch_vis(vis=main.vis, epoch=temp_local_epoch,
data_len=temp_data_len,
batch=batch_id,distance_to_global_model= distance_to_global_model,
eid=helper.params['environment_name'],
name=str(agent_name_key),is_poisoned=False)
acc = 100.0 * (float(correct) / float(dataset_size))
total_l = total_loss / dataset_size
main.logger.info(
'___Train {}, epoch {:3d}, local model {}, internal_epoch {:3d}, Average loss: {:.4f}, '
'Accuracy: {}/{} ({:.4f}%)'.format(model.name, epoch, agent_name_key, internal_epoch,
total_l, correct, dataset_size,
acc))
csv_record.train_result.append([agent_name_key, temp_local_epoch,
epoch, internal_epoch, total_l.item(), acc, correct, dataset_size])
if helper.params['vis_train']:
model.train_vis(main.vis, temp_local_epoch,
acc, loss=total_l, eid=helper.params['environment_name'], is_poisoned=False,
name=str(agent_name_key))
num_samples_dict[agent_name_key] = dataset_size
if helper.params["batch_track_distance"]:
main.logger.info(
f'MODEL {model_id}. P-norm is {helper.model_global_norm(model):.4f}. '
f'Distance to the global model: {dis2global_list}. ')
# test local model after internal epoch finishing
epoch_loss, epoch_acc, epoch_corret, epoch_total = test.Mytest(helper=helper, epoch=epoch,
model=model, is_poison=False, visualize=True,
agent_name_key=agent_name_key)
csv_record.test_result.append([agent_name_key, epoch, epoch_loss, epoch_acc, epoch_corret, epoch_total])
if is_poison:
if agent_name_key in helper.params['adversary_list'] and (epoch in localmodel_poison_epochs):
epoch_loss, epoch_acc, epoch_corret, epoch_total = test.Mytest_poison(helper=helper,
epoch=epoch,
model=model,
is_poison=True,
visualize=True,
agent_name_key=agent_name_key)
csv_record.posiontest_result.append(
[agent_name_key, epoch, epoch_loss, epoch_acc, epoch_corret, epoch_total])
# test on local triggers
if agent_name_key in helper.params['adversary_list']:
if helper.params['vis_trigger_split_test']:
model.trigger_agent_test_vis(vis=main.vis, epoch=epoch, acc=epoch_acc, loss=None,
eid=helper.params['environment_name'],
name=str(agent_name_key) + "_combine")
epoch_loss, epoch_acc, epoch_corret, epoch_total = \
test.Mytest_poison_agent_trigger(helper=helper, model=model, agent_name_key=agent_name_key)
csv_record.poisontriggertest_result.append(
[agent_name_key, str(agent_name_key) + "_trigger", "", epoch, epoch_loss,
epoch_acc, epoch_corret, epoch_total])
if helper.params['vis_trigger_split_test']:
model.trigger_agent_test_vis(vis=main.vis, epoch=epoch, acc=epoch_acc, loss=None,
eid=helper.params['environment_name'],
name=str(agent_name_key) + "_trigger")
# update the model weight
local_model_update_dict = dict()
for name, data in model.state_dict().items():
local_model_update_dict[name] = torch.zeros_like(data)
local_model_update_dict[name] = (data - last_local_model[name])
last_local_model[name] = copy.deepcopy(data)
if helper.params['aggregation_methods'] == config.AGGR_FOOLSGOLD:
epochs_local_update_list.append(client_grad)
else:
epochs_local_update_list.append(local_model_update_dict)
epochs_submit_update_dict[agent_name_key] = epochs_local_update_list
return epochs_submit_update_dict, num_samples_dict