-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathCRF_Model.py
253 lines (187 loc) · 8.96 KB
/
CRF_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from typing import List, Optional
import torch
import torch.nn as nn
class CRF(nn.Module):
def __init__(self,num_tags : int = 2, batch_first:bool = True) -> None:
if num_tags <= 0:
raise ValueError(f'invalid number of tags: {num_tags}')
super().__init__()
self.num_tags = num_tags
self.batch_first = batch_first
# start 到其他tag(不包含end)的得分
self.start_transitions = nn.Parameter(torch.empty(num_tags))
# 到其他tag(不包含start)到end的得分
self.end_transitions = nn.Parameter(torch.empty(num_tags))
# 从 _compute_normalizer 中 next_score = broadcast_score + self.transitions + broadcast_emissions 可以看出
# transitions[i][j] 表示从第j个tag 到第 i 个 tag的分数
# 更正 :transitions[i][j] 表示从第i个tag 到第 j 个 tag的分数
self.transitions = nn.Parameter(torch.empty(num_tags,num_tags))
self.reset_parameters()
def reset_parameters(self):
init_range = 0.1
nn.init.uniform_(self.start_transitions,-init_range,init_range)
nn.init.uniform_(self.end_transitions,-init_range,init_range)
nn.init.uniform_(self.transitions, -init_range, init_range)
def __repr__(self):
return f'{self.__class__.__name__}(num_tags={self.num_tags})'
def forward(self, emissions:torch.Tensor,
tags:torch.Tensor = None,
mask:Optional[torch.ByteTensor] = None,
reduction: str = "mean") -> torch.Tensor:
self._validate(emissions, tags = tags ,mask = mask)
reduction = reduction.lower()
if reduction not in ('none','sum','mean','token_mean'):
raise ValueError(f'invalid reduction {reduction}')
if mask is None:
mask = torch.ones_like(tags,dtype = torch.uint8)
# a.shape (seq_len,batch_size)
# a[0] shape ? batch_size
if self.batch_first:
# emissions.shape (seq_len,batch_size,tag_num)
emissions = emissions.transpose(0,1)
tags = tags.transpose(0,1)
mask = mask.transpose(0,1)
# shape: (batch_size,)
numerator = self._computer_score(emissions=emissions,tags=tags,mask=mask)
# shape: (batch_size,)
denominator = self._compute_normalizer(emissions=emissions,mask=mask)
# shape: (batch_size,)
llh = denominator - numerator
if reduction == 'none':
return llh
elif reduction == 'sum':
return llh.sum()
elif reduction == 'mean':
return llh.mean()
assert reduction == 'token_mean'
return llh.sum() / mask.float().sum()
def decode(self,emissions:torch.Tensor,
mask : Optional[torch.ByteTensor] = None) ->List[List[int]]:
self._validate(emissions=emissions,mask=mask)
if mask is None:
mask = emissions.new_ones(emissions.shape[:2],dtype=torch.uint8)
if self.batch_first:
emissions = emissions.transpose(0,1)
mask = mask.transpose(0,1)
return self._viterbi_decode(emissions,mask)
def _validate(self,
emissions:torch.Tensor,
tags:Optional[torch.LongTensor] = None ,
mask:Optional[torch.ByteTensor] = None) -> None:
if emissions.dim() != 3:
raise ValueError(f"emissions must have dimension of 3 , got {emissions.dim()}")
if emissions.size(2) != self.num_tags:
raise ValueError(
f'expected last dimension of emissions is {self.num_tags},'
f'got {emissions.size(2)}'
)
if tags is not None:
if emissions.shape[:2] != mask.shape:
raise ValueError(
'the first two dimensions of and mask must match,'
f'got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}'
)
no_empty_seq = not self.batch_first and mask[0].all()
no_empty_seq_bf = self.batch_first and mask[:,0].all()
if not no_empty_seq and not no_empty_seq_bf:
raise ValueError('mask of the first timestep must all be on')
def _computer_score(self,
emissions:torch.Tensor,
tags:torch.LongTensor,
mask:torch.ByteTensor) -> torch.Tensor:
# batch second
assert emissions.dim() == 3 and tags.dim() == 2
assert emissions.shape[:2] == tags.shape
assert emissions.size(2) == self.num_tags
assert mask.shape == tags.shape
assert mask[0].all()
seq_length,batch_size = tags.shape
mask = mask.float()
# self.start_transitions start 到其他tag(不包含end)的得分
score = self.start_transitions[tags[0]]
# emissions.shape (seq_len,batch_size,tag_nums)
score += emissions[0,torch.arange(batch_size),tags[0]]
for i in range(1,seq_length):
# if mask[i].sum() == 0:
# break
score += self.transitions[tags[i-1], tags[i]] * mask[i]
score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i]
# 这里是为了获取每一个样本最后一个词的tag。
# shape: (batch_size,) 每一个batch 的真实长度
seq_ends = mask.long().sum(dim=0) - 1
# 每个样本最火一个词的tag
last_tags = tags[seq_ends,torch.arange(batch_size)]
# shape: (batch_size,) 每一个样本到最后一个词的得分加上之前的score
score += self.end_transitions[last_tags]
return score
def _compute_normalizer(self,
emissions:torch.Tensor ,
mask: torch.ByteTensor) -> torch.Tensor:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
assert emissions.dim() == 3 and mask.dim() == 2
assert emissions.shape[:2] == mask.shape
assert emissions.size(2) == self.num_tags
assert mask[0].all()
seq_length = emissions.size(0)
# shape : (batch_size,num_tag)
# self.start_transitions start 到其他tag(不包含end)的得分
# start_transitions.shape tag_nums emissions[0].shape (batch_size,tag_size)
score = self.start_transitions + emissions[0]
for i in range(1,seq_length):
# shape : (batch_size,num_tag,1)
broadcast_score = score.unsqueeze(dim=2)
# shape: (batch_size,1,num_tags)
broadcast_emissions = emissions[i].unsqueeze(1)
next_score = broadcast_score + self.transitions + broadcast_emissions
next_score = torch.logsumexp(next_score,dim = 1)
score = torch.where(mask[i].unsqueeze(1),next_score,score)
# shape (batch_size,num_tags)
score += self.end_transitions
# shape: (batch_size)
return torch.logsumexp(score,dim=1)
def _viterbi_decode(self,emissions : torch.FloatTensor ,
mask : torch.ByteTensor) -> List[List[int]]:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
assert emissions.dim() == 3 and mask.dim() == 2
assert emissions.shape[:2] == mask.shape
assert emissions.size(2) == self.num_tags
assert mask[0].all()
seq_length , batch_size = mask.shape
# self.start_transitions start 到其他tag(不包含end)的得分
score = self.start_transitions + emissions[0]
history = []
# for i in range(1,seq_length):
#
# # shape : (batch_size,num_tag,1)
# broadcast_score = score.unsqueeze(dim=2)
#
# # shape: (batch_size,1,num_tags)
# broadcast_emissions = emissions[i].unsqueeze(1)
#
# next_score = broadcast_score + self.transitions + broadcast_emissions
#
# next_score = torch.logsumexp(next_score,dim = 1)
#
# score = torch.where(mask[i].unsqueeze(1),next_score,score)
for i in range(1,seq_length):
broadcast_score = score.unsqueeze(2)
broadcast_emission = emissions[i].unsqueeze(1)
next_score = broadcast_score + self.transitions + broadcast_emission
next_score, indices = next_score.max(dim=1)
score = torch.where(mask[i].unsqueeze(1), next_score, score)
history.append(indices)
score += self.end_transitions
seq_ends = mask.long().sum(dim=0) - 1
best_tags_list = []
for idx in range(batch_size):
_,best_last_tag = score[idx].max(dim = 0)
best_tags= [best_last_tag.item()]
# history[:seq_ends[idx]].shape (seq_ends[idx])
for hist in reversed(history[:seq_ends[idx]]):
best_last_tag = hist[idx][best_tags[-1]]
best_tags.append(best_last_tag.item())
best_tags.reverse()
best_tags_list.append(best_tags)
return best_tags_list