forked from anuraghazra/github-readme-stats
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculateRank.js
75 lines (67 loc) · 2.11 KB
/
calculateRank.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function exponential_cdf(x) {
return 1 - 2 ** -x;
}
function log_normal_cdf(x) {
// approximation
return x / (1 + x);
}
/**
* Calculates the users rank.
*
* @param {object} params Parameters on which the user's rank depends.
* @param {boolean} params.all_commits Whether `include_all_commits` was used.
* @param {number} params.commits Number of commits.
* @param {number} params.prs The number of pull requests.
* @param {number} params.issues The number of issues.
* @param {number} params.reviews The number of reviews.
* @param {number} params.repos Total number of repos.
* @param {number} params.stars The number of stars.
* @param {number} params.followers The number of followers.
* @returns {{level: string, percentile: number}}} The users rank.
*/
function calculateRank({
all_commits,
commits,
prs,
issues,
reviews,
// eslint-disable-next-line no-unused-vars
repos, // unused
stars,
followers,
}) {
const COMMITS_MEDIAN = all_commits ? 1000 : 250,
COMMITS_WEIGHT = 2;
const PRS_MEDIAN = 50,
PRS_WEIGHT = 3;
const ISSUES_MEDIAN = 25,
ISSUES_WEIGHT = 1;
const REVIEWS_MEDIAN = 2,
REVIEWS_WEIGHT = 1;
const STARS_MEDIAN = 50,
STARS_WEIGHT = 4;
const FOLLOWERS_MEDIAN = 10,
FOLLOWERS_WEIGHT = 1;
const TOTAL_WEIGHT =
COMMITS_WEIGHT +
PRS_WEIGHT +
ISSUES_WEIGHT +
REVIEWS_WEIGHT +
STARS_WEIGHT +
FOLLOWERS_WEIGHT;
const THRESHOLDS = [1, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100];
const LEVELS = ["S", "A+", "A", "A-", "B+", "B", "B-", "C+", "C"];
const rank =
1 -
(COMMITS_WEIGHT * exponential_cdf(commits / COMMITS_MEDIAN) +
PRS_WEIGHT * exponential_cdf(prs / PRS_MEDIAN) +
ISSUES_WEIGHT * exponential_cdf(issues / ISSUES_MEDIAN) +
REVIEWS_WEIGHT * exponential_cdf(reviews / REVIEWS_MEDIAN) +
STARS_WEIGHT * log_normal_cdf(stars / STARS_MEDIAN) +
FOLLOWERS_WEIGHT * log_normal_cdf(followers / FOLLOWERS_MEDIAN)) /
TOTAL_WEIGHT;
const level = LEVELS[THRESHOLDS.findIndex((t) => rank * 100 <= t)];
return { level, percentile: rank * 100 };
}
export { calculateRank };
export default calculateRank;