forked from lawlite19/MachineLearning_Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogisticRegression_scikit-learn.py
45 lines (34 loc) · 1.34 KB
/
LogisticRegression_scikit-learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# -*- coding: utf-8 -*-
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
# from sklearn.cross_validation import train_test_split # 0.18版本之后废弃
from sklearn.model_selection import train_test_split
import numpy as np
def logisticRegression():
data = loadtxtAndcsv_data("data1.txt", ",", np.float64)
X = data[:,0:-1]
y = data[:,-1]
# 划分为训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
# 归一化
scaler = StandardScaler()
# scaler.fit(x_train)
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
# 逻辑回归
model = LogisticRegression()
model.fit(x_train,y_train)
# 预测
predict = model.predict(x_test)
right = sum(predict == y_test)
predict = np.hstack((predict.reshape(-1,1),y_test.reshape(-1,1))) # 将预测值和真实值放在一块,好观察
print(predict)
print('测试集准确率:%f%%'%(right*100.0/predict.shape[0])) # 计算在测试集上的准确度
# 加载txt和csv文件
def loadtxtAndcsv_data(fileName,split,dataType):
return np.loadtxt(fileName,delimiter=split,dtype=dataType)
# 加载npy文件
def loadnpy_data(fileName):
return np.load(fileName)
if __name__ == "__main__":
logisticRegression()